BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3562 related articles for article (PubMed ID: 8668867)

  • 1. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.
    Harrell FE; Lee KL; Mark DB
    Stat Med; 1996 Feb; 15(4):361-87. PubMed ID: 8668867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A discussion of calibration techniques for evaluating binary and categorical predictive models.
    Fenlon C; O'Grady L; Doherty ML; Dunnion J
    Prev Vet Med; 2018 Jan; 149():107-114. PubMed ID: 29290291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a clinical prediction model for an ordinal outcome: the World Health Organization Multicentre Study of Clinical Signs and Etiological agents of Pneumonia, Sepsis and Meningitis in Young Infants. WHO/ARI Young Infant Multicentre Study Group.
    Harrell FE; Margolis PA; Gove S; Mason KE; Mulholland EK; Lehmann D; Muhe L; Gatchalian S; Eichenwald HF
    Stat Med; 1998 Apr; 17(8):909-44. PubMed ID: 9595619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of multivariable mathematical methods for predicting survival--III. Accuracy of predictions in generating and challenge sets.
    Wells CK; Feinstein AR; Walter SD
    J Clin Epidemiol; 1990; 43(4):361-72. PubMed ID: 2324777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity to censored-at-random assumption in the analysis of time-to-event endpoints.
    Lipkovich I; Ratitch B; O'Kelly M
    Pharm Stat; 2016 May; 15(3):216-29. PubMed ID: 26997353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.
    Karabatsos G
    Behav Res Methods; 2017 Feb; 49(1):335-362. PubMed ID: 26956682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-level models for repeated measurement data: application to quality of life data in clinical trials.
    Beacon HJ; Thompson SG
    Stat Med; 1996 Dec; 15(24):2717-32. PubMed ID: 8981682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Clinical Outcomes in Prostate Cancer: Application and Validation of the Discrete Event Simulation Approach.
    Pan F; Reifsnider O; Zheng Y; Proskorovsky I; Li T; He J; Sorensen SV
    Value Health; 2018 Apr; 21(4):416-422. PubMed ID: 29680098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual prognosis at diagnosis in nonmetastatic prostate cancer: Development and external validation of the PREDICT Prostate multivariable model.
    Thurtle DR; Greenberg DC; Lee LS; Huang HH; Pharoah PD; Gnanapragasam VJ
    PLoS Med; 2019 Mar; 16(3):e1002758. PubMed ID: 30860997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival analysis and development of a prognostic nomogram for bone-metastatic prostate cancer patients: A single-center experience in Indonesia.
    Afriansyah A; Hamid ARA; Mochtar CA; Umbas R
    Int J Urol; 2019 Jan; 26(1):83-89. PubMed ID: 30269369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter estimation and goodness-of-fit in log binomial regression.
    Blizzard L; Hosmer DW
    Biom J; 2006 Feb; 48(1):5-22. PubMed ID: 16544809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of prognostic models: when is a model clinically useful?
    Vergouwe Y; Steyerberg EW; Eijkemans MJ; Habbema JD
    Semin Urol Oncol; 2002 May; 20(2):96-107. PubMed ID: 12012295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction in censored survival data: a comparison of the proportional hazards and linear regression models.
    Heller G; Simonoff JS
    Biometrics; 1992 Mar; 48(1):101-15. PubMed ID: 1581480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validity and efficiency of approximation methods for tied survival times in Cox regression.
    Hertz-Picciotto I; Rockhill B
    Biometrics; 1997 Sep; 53(3):1151-6. PubMed ID: 9333345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of multivariable mathematical methods for predicting survival--II. Statistical selection of prognostic variables.
    Walter SD; Feinstein AR; Wells CK
    J Clin Epidemiol; 1990; 43(4):349-59. PubMed ID: 2324776
    [No Abstract]   [Full Text] [Related]  

  • 16. Trees and splines in survival analysis.
    Intrator O; Kooperberg C
    Stat Methods Med Res; 1995 Sep; 4(3):237-61. PubMed ID: 8548105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extending the Peters-Belson approach for assessing disparities to right censored time-to-event outcomes.
    Eberly LE; Hodges JS; Savik K; Gurvich O; Bliss DZ; Mueller C
    Stat Med; 2013 Oct; 32(23):4006-20. PubMed ID: 23703882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Case Study Examining the Usefulness of Cure Modelling for the Prediction of Survival Based on Data Maturity.
    Grant TS; Burns D; Kiff C; Lee D
    Pharmacoeconomics; 2020 Apr; 38(4):385-395. PubMed ID: 31848900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iVAR: a program for imputing missing data in multivariate time series using vector autoregressive models.
    Liu S; Molenaar PC
    Behav Res Methods; 2014 Dec; 46(4):1138-48. PubMed ID: 24515888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 179.