BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8669662)

  • 1. Loss of cerebral pressure autoregulation and vasoreactivity to carbon dioxide after cerebral hypoxia.
    Lillywhite N; Matta B
    Anaesth Intensive Care; 1996 Feb; 24(1):91-3. PubMed ID: 8669662
    [No Abstract]   [Full Text] [Related]  

  • 2. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study.
    Lee JH; Kelly DF; Oertel M; McArthur DL; Glenn TC; Vespa P; Boscardin WJ; Martin NA
    J Neurosurg; 2001 Aug; 95(2):222-32. PubMed ID: 11780891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Arterial Carbon Dioxide Partial Pressure Do Not Affect Cerebral Autoregulation in Septic Patients.
    Crippa IA; Alvaro Quispe Cornejo A; Taccone FS
    Neurocrit Care; 2022 Oct; 37(2):572-574. PubMed ID: 35819708
    [No Abstract]   [Full Text] [Related]  

  • 6. Cerebral haemodynamics in pregnancy and pre-eclampsia as assessed by transcranial Doppler ultrasonography.
    Sherman RW; Bowie RA; Henfrey MM; Mahajan RP; Bogod D
    Br J Anaesth; 2002 Nov; 89(5):687-92. PubMed ID: 12393763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass.
    Ševerdija EE; Gommer ED; Weerwind PW; Reulen JP; Mess WH; Maessen JG
    Med Biol Eng Comput; 2015 Mar; 53(3):195-203. PubMed ID: 25412609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral vasoreactivity in children and adolescents with type 1 diabetes mellitus.
    Hoffman WH; Litaker MS; Pluta RM; Camens ML
    Endocr Res; 2004 Aug; 30(3):315-25. PubMed ID: 15554347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of autoregulation during arterial and cerebral hypoxia.
    Häggendal E
    Scand J Clin Lab Invest Suppl; 1968; 102():V:D. PubMed ID: 5707559
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of cerebral autoregulation by carbon dioxide.
    Meng L; Gelb AW
    Anesthesiology; 2015 Jan; 122(1):196-205. PubMed ID: 25401418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of the transient hyperemic response test in detecting changes in cerebral autoregulation induced by the graded variations in end-tidal carbon dioxide.
    Mahajan RP; Cavill G; Simpson EJ
    Anesth Analg; 1998 Oct; 87(4):843-9. PubMed ID: 9768780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral Autoregulation is Influenced by Carbon Dioxide Levels in Anoxic Brain Injury.
    Crippa IA; Zama Cavicchi F; Taccone FS
    Neurocrit Care; 2023 Dec; 39(3):697-700. PubMed ID: 36854865
    [No Abstract]   [Full Text] [Related]  

  • 13. Cerebral haemodynamics in infants during cardiopulmonary bypass.
    Taylor RH; Burrows FA; Bissonnette B
    Can J Anaesth; 1990 May; 37(4 Pt 2):S153. PubMed ID: 2113837
    [No Abstract]   [Full Text] [Related]  

  • 14. Elimination of brain cortical blood flow autoregulation following hypoxia.
    Freeman J
    Scand J Clin Lab Invest Suppl; 1968; 102():V:E. PubMed ID: 5707560
    [No Abstract]   [Full Text] [Related]  

  • 15. Cerebral autoregulation and anesthesia.
    Dagal A; Lam AM
    Curr Opin Anaesthesiol; 2009 Oct; 22(5):547-52. PubMed ID: 19620861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination the individual normal values of cerebral hemodynamics in humans].
    Volians'kyĭ OM
    Fiziol Zh (1994); 2004; 50(6):101-6. PubMed ID: 15732766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans.
    Hoiland RL; Bain AR; Tymko MM; Rieger MG; Howe CA; Willie CK; Hansen AB; Flück D; Wildfong KW; Stembridge M; Subedi P; Anholm J; Ainslie PN
    J Appl Physiol (1985); 2017 Apr; 122(4):795-808. PubMed ID: 28082335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide--a complex gas in a complex circulation: its effects on systemic hemodynamics and oxygen transport, cerebral, and splanchnic circulation in neonates after the Norwood procedure.
    Li J; Zhang G; Holtby H; Bissonnette B; Wang G; Redington AN; Van Arsdell GS
    J Thorac Cardiovasc Surg; 2008 Nov; 136(5):1207-14. PubMed ID: 19026805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency.
    Iwasaki K; Ogawa Y; Shibata S; Aoki K
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):776-84. PubMed ID: 16926845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology of cerebral blood flow.
    Lassen NA; Christensen MS
    Br J Anaesth; 1976 Aug; 48(8):719-34. PubMed ID: 7284
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.