These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 8669897)
1. Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Passoth V; Zimmermann M; Klinner U Appl Biochem Biotechnol; 1996; 57-58():201-12. PubMed ID: 8669897 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. Ishchuk OP; Voronovsky AY; Stasyk OV; Gayda GZ; Gonchar MV; Abbas CA; Sibirny AA FEMS Yeast Res; 2008 Nov; 8(7):1164-74. PubMed ID: 18752627 [TBL] [Abstract][Full Text] [Related]
3. Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis. Mergler M; Klinner U Acta Biol Hung; 2001; 52(2-3):265-9. PubMed ID: 11426860 [TBL] [Abstract][Full Text] [Related]
4. Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Fredlund E; Blank LM; Schnürer J; Sauer U; Passoth V Appl Environ Microbiol; 2004 Oct; 70(10):5905-11. PubMed ID: 15466531 [TBL] [Abstract][Full Text] [Related]
5. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Agbogbo FK; Coward-Kelly G Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677 [TBL] [Abstract][Full Text] [Related]
6. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Postma E; Verduyn C; Scheffers WA; Van Dijken JP Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299 [TBL] [Abstract][Full Text] [Related]
7. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag. Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229 [TBL] [Abstract][Full Text] [Related]
8. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. Wahlbom CF; van Zyl WH; Jönsson LJ; Hahn-Hägerdal B; Otero RR FEMS Yeast Res; 2003 May; 3(3):319-26. PubMed ID: 12689639 [TBL] [Abstract][Full Text] [Related]
10. Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. van Urk H; Schipper D; Breedveld GJ; Mak PR; Scheffers WA; van Dijken JP Biochim Biophys Acta; 1989 Jul; 992(1):78-86. PubMed ID: 2665820 [TBL] [Abstract][Full Text] [Related]
11. Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of XYL1. Dahn KM; Davis BP; Pittman PE; Kenealy WR; Jeffries TW Appl Biochem Biotechnol; 1996; 57-58():267-76. PubMed ID: 8669900 [TBL] [Abstract][Full Text] [Related]
12. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Rodrigues RC; Lu C; Lin B; Jeffries TW Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752 [TBL] [Abstract][Full Text] [Related]
13. Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Cho JY; Jeffries TW Appl Environ Microbiol; 1998 Apr; 64(4):1350-8. PubMed ID: 9546172 [TBL] [Abstract][Full Text] [Related]
14. Genetic transformation of xylose-fermenting yeast Pichia stipitis. Scientific note. Ho NW; Petros D; Deng XX Appl Biochem Biotechnol; 1991; 28-29():369-75. PubMed ID: 1929374 [TBL] [Abstract][Full Text] [Related]
15. The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Watanabe S; Pack SP; Saleh AA; Annaluru N; Kodaki T; Makino K Biosci Biotechnol Biochem; 2007 May; 71(5):1365-9. PubMed ID: 17485825 [TBL] [Abstract][Full Text] [Related]
17. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Verduyn C; Van Kleef R; Frank J; Schreuder H; Van Dijken JP; Scheffers WA Biochem J; 1985 Mar; 226(3):669-77. PubMed ID: 3921014 [TBL] [Abstract][Full Text] [Related]
18. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. Ryabova OB; Chmil OM; Sibirny AA FEMS Yeast Res; 2003 Nov; 4(2):157-64. PubMed ID: 14613880 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Rudolf A; Baudel H; Zacchi G; Hahn-Hägerdal B; Lidén G Biotechnol Bioeng; 2008 Mar; 99(4):783-90. PubMed ID: 17787015 [TBL] [Abstract][Full Text] [Related]
20. SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Shi NQ; Cruz J; Sherman F; Jeffries TW Yeast; 2002 Oct; 19(14):1203-20. PubMed ID: 12271457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]