These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8670057)
1. Phosphonamidate analogues of dipeptides with carboxypeptidase A and beta-lactamase-inhibitory activity: elucidation of the mechanism of beta-lactamase inhibition by electrospray mass spectrometry. Payne DJ; Bateson JH; Tolson D; Gasson B; Khushi T; Ledent P; Frère JM Biochem J; 1996 Mar; 314 ( Pt 2)(Pt 2):457-61. PubMed ID: 8670057 [TBL] [Abstract][Full Text] [Related]
2. Phosphonamidate and phosphothioate dipeptides as potential inhibitors of VanX. Yang KW; Brandt JJ; Chatwood LL; Crowder MW Bioorg Med Chem Lett; 2000 May; 10(10):1085-7. PubMed ID: 10843223 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by phosphonate monoesters. Rahil J; Pratt RF Biochemistry; 1992 Jun; 31(25):5869-78. PubMed ID: 1610830 [TBL] [Abstract][Full Text] [Related]
4. The relative catalytic efficiency of beta-lactamase catalyzed acyl and phosphyl transfer. Slater MJ; Laws AP; Page MI Bioorg Chem; 2001 Apr; 29(2):77-95. PubMed ID: 11300697 [TBL] [Abstract][Full Text] [Related]
5. The D-methyl group in beta-lactamase evolution: evidence from the Y221G and GC1 mutants of the class C beta-lactamase of Enterobacter cloacae P99. Adediran SA; Zhang Z; Nukaga M; Palzkill T; Pratt RF Biochemistry; 2005 May; 44(20):7543-52. PubMed ID: 15895997 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of reaction of acyl phosph(on)ates with the beta-lactamase of Enterobacter cloacae P99. Kaur K; Pratt RF Biochemistry; 2001 Apr; 40(15):4610-21. PubMed ID: 11294628 [TBL] [Abstract][Full Text] [Related]
7. Stereoselective inhibition of glutamate carboxypeptidase by organophosphorus derivatives of glutamic acid. Mallari JP; Choy CJ; Hu Y; Martinez AR; Hosaka M; Toriyabe Y; Maung J; Blecha JE; Pavkovic SF; Berkman CE Bioorg Med Chem; 2004 Nov; 12(22):6011-20. PubMed ID: 15498677 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of beta-lactamases from Enterobacter cloacae by monophosphams. Bush K; Smith SA; Tanaka SK; Bonner DP J Antimicrob Chemother; 1988 Dec; 22(6):801-9. PubMed ID: 3266620 [TBL] [Abstract][Full Text] [Related]
9. Kinetics and mechanism of beta-lactamase inhibition by phosphonamidates: the quest for a proton. Rahil J; Pratt RF Biochemistry; 1993 Oct; 32(40):10763-72. PubMed ID: 8399224 [TBL] [Abstract][Full Text] [Related]
10. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling. Bernstein NJ; Pratt RF Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes. Kim H; Lipscomb WN Biochemistry; 1990 Jun; 29(23):5546-55. PubMed ID: 2386784 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives. Payne DJ; Bateson JH; Gasson BC; Proctor D; Khushi T; Farmer TH; Tolson DA; Bell D; Skett PW; Marshall AC; Reid R; Ghosez L; Combret Y; Marchand-Brynaert J Antimicrob Agents Chemother; 1997 Jan; 41(1):135-40. PubMed ID: 8980769 [TBL] [Abstract][Full Text] [Related]
13. Structure-activity relationships in the inhibition of serine beta-lactamases by phosphonic acid derivatives. Rahil J; Pratt RF Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):389-93. PubMed ID: 8257429 [TBL] [Abstract][Full Text] [Related]
14. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors. Hanson JE; Kaplan AP; Bartlett PA Biochemistry; 1989 Jul; 28(15):6294-305. PubMed ID: 2790000 [TBL] [Abstract][Full Text] [Related]
15. Peptidase activity of beta-lactamases. Rhazi N; Galleni M; Page MI; Frère JM Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):409-13. PubMed ID: 10393100 [TBL] [Abstract][Full Text] [Related]
16. Breakdown of the stereospecificity of DD-peptidases and beta-lactamases with thiolester substrates. Damblon C; Zhao GH; Jamin M; Ledent P; Dubus A; Vanhove M; Raquet X; Christiaens L; Frère JM Biochem J; 1995 Jul; 309 ( Pt 2)(Pt 2):431-6. PubMed ID: 7626006 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics. Kumar S; Adediran SA; Nukaga M; Pratt RF Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604 [TBL] [Abstract][Full Text] [Related]
18. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity. Grembecka J; Mucha A; Cierpicki T; Kafarski P J Med Chem; 2003 Jun; 46(13):2641-55. PubMed ID: 12801228 [TBL] [Abstract][Full Text] [Related]
19. Altering enzymatic activity: recruitment of carboxypeptidase activity into an RTEM beta-lactamase/penicillin-binding protein 5 chimera. Chang YH; Labgold MR; Richards JH Proc Natl Acad Sci U S A; 1990 Apr; 87(7):2823-7. PubMed ID: 2181451 [TBL] [Abstract][Full Text] [Related]
20. Use of electrospray mass spectrometry to directly observe an acyl enzyme intermediate in beta-lactamase catalysis. Aplin RT; Baldwin JE; Schofield CJ; Waley SG FEBS Lett; 1990 Dec; 277(1-2):212-4. PubMed ID: 2269358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]