These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8670057)
21. The beta-lactamase of Enterobacter cloacae P99. Chemical properties, N-terminal sequence and interaction with 6 beta-halogenopenicillanates. Joris B; De Meester F; Galleni M; Reckinger G; Coyette J; Frere JM; Van Beeumen J Biochem J; 1985 May; 228(1):241-8. PubMed ID: 2988516 [TBL] [Abstract][Full Text] [Related]
22. Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Brown RP; Aplin RT; Schofield CJ Biochemistry; 1996 Sep; 35(38):12421-32. PubMed ID: 8823177 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by cyclic acyl phosph(on)ates: rescue by return. Kaur K; Lan MJ; Pratt RF J Am Chem Soc; 2001 Oct; 123(43):10436-43. PubMed ID: 11673973 [TBL] [Abstract][Full Text] [Related]
24. Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Pratt RF Science; 1989 Nov; 246(4932):917-9. PubMed ID: 2814513 [TBL] [Abstract][Full Text] [Related]
25. Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening. Liu R; Teo W; Tan S; Feng H; Padmanabhan P; Xing B Analyst; 2010 May; 135(5):1031-6. PubMed ID: 20419253 [TBL] [Abstract][Full Text] [Related]
26. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases. Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108 [TBL] [Abstract][Full Text] [Related]
27. The active site of the P99 beta-lactamase from Enterobacter cloacae. Joris B; Dusart J; Frere JM; van Beeumen J; Emanuel EL; Petursson S; Gagnon J; Waley SG Biochem J; 1984 Oct; 223(1):271-4. PubMed ID: 6333871 [TBL] [Abstract][Full Text] [Related]
28. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase. Adediran SA; Pratt RF Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012 [TBL] [Abstract][Full Text] [Related]
29. 3-Phosphonopropionic acids inhibit carboxypeptidase A as multisubstrate analogues or transition-state analogues. Grobelny D; Goli UB; Galardy RE Biochem J; 1985 Nov; 232(1):15-9. PubMed ID: 4084224 [TBL] [Abstract][Full Text] [Related]
30. Structure-activity studies of the inhibition of serine beta-lactamases by phosphonate monoesters. Li N; Rahil J; Wright ME; Pratt RF Bioorg Med Chem; 1997 Sep; 5(9):1783-8. PubMed ID: 9354233 [TBL] [Abstract][Full Text] [Related]
31. Kinetic and physical studies of beta-lactamase inhibition by a novel penem, BRL 42715. Farmer TH; Page JW; Payne DJ; Knowles DJ Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):825-30. PubMed ID: 7980451 [TBL] [Abstract][Full Text] [Related]
32. A point mutation leads to altered product specificity in beta-lactamase catalysis. Lewis ER; Winterberg KM; Fink AL Proc Natl Acad Sci U S A; 1997 Jan; 94(2):443-7. PubMed ID: 9012802 [TBL] [Abstract][Full Text] [Related]
33. Kinetics and mechanism of the hydrolysis of depsipeptides catalyzed by the beta-lactamase of Enterobacter cloacae P99. Xu Y; Soto G; Hirsch KR; Pratt RF Biochemistry; 1996 Mar; 35(11):3595-603. PubMed ID: 8639511 [TBL] [Abstract][Full Text] [Related]
34. Glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of γ-glutamyl transpeptidase for probing cysteinyl-glycine binding site. Nakajima M; Watanabe B; Han L; Shimizu B; Wada K; Fukuyama K; Suzuki H; Hiratake J Bioorg Med Chem; 2014 Feb; 22(3):1176-94. PubMed ID: 24411479 [TBL] [Abstract][Full Text] [Related]
35. A New Covalent Inhibitor of Class C β-Lactamases Reveals Extended Active Site Specificity. Tilvawala R; Cammarata M; Adediran SA; Brodbelt JS; Pratt RF Biochemistry; 2015 Dec; 54(50):7375-84. PubMed ID: 26651220 [TBL] [Abstract][Full Text] [Related]
36. Mechanistic studies on the inhibition of stromelysin by a peptide phosphonamidate. Izquierdo-Martin M; Stein RL Bioorg Med Chem; 1993 Jul; 1(1):19-26. PubMed ID: 8081834 [TBL] [Abstract][Full Text] [Related]
37. Novel mechanism of inhibiting beta-lactamases by sulfonylation using beta-sultams. Page MI; Hinchliffe PS; Wood JM; Harding LP; Laws AP Bioorg Med Chem Lett; 2003 Dec; 13(24):4489-92. PubMed ID: 14643353 [TBL] [Abstract][Full Text] [Related]
38. Effect of an amino acid insertion into the omega loop region of a class C beta-lactamase on its substrate specificity. Nukaga M; Taniguchi K; Washio Y; Sawai T Biochemistry; 1998 Jul; 37(29):10461-8. PubMed ID: 9671516 [TBL] [Abstract][Full Text] [Related]
39. Evidence for an oxyanion hole in serine beta-lactamases and DD-peptidases. Murphy BP; Pratt RF Biochem J; 1988 Dec; 256(2):669-72. PubMed ID: 3066349 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX. Yang KW; Cheng X; Zhao C; Liu CC; Jia C; Feng L; Xiao JM; Zhou LS; Gao HZ; Yang X; Zhai L Bioorg Med Chem Lett; 2011 Dec; 21(23):7224-7. PubMed ID: 22001030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]