These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8670094)

  • 1. Synergistic binding of inhibitors to the protease from HIV type 1.
    Asante-Appiah E; Chan WW
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):113-7. PubMed ID: 8670094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of HIV-1 protease.
    Meek TD
    J Enzyme Inhib; 1992; 6(1):65-98. PubMed ID: 1285304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors.
    Friedler A; Blumenzweig I; Baraz L; Steinitz M; Kotler M; Gilon C
    J Mol Biol; 1999 Mar; 287(1):93-101. PubMed ID: 10074409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of efficiently cleaved substrates for HIV-1 protease using a phage display library and use in inhibitor development.
    Beck ZQ; Hervio L; Dawson PE; Elder JH; Madison EL
    Virology; 2000 Sep; 274(2):391-401. PubMed ID: 10964781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine.
    Baldwin ET; Bhat TN; Gulnik S; Liu B; Topol IA; Kiso Y; Mimoto T; Mitsuya H; Erickson JW
    Structure; 1995 Jun; 3(6):581-90. PubMed ID: 8590019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative study of drug resistance in retroviral protease using structural modeling and site-directed mutagenesis.
    Culberson JC; Bush BL; Sardana VV
    Methods Enzymol; 1994; 241():385-94. PubMed ID: 7854190
    [No Abstract]   [Full Text] [Related]  

  • 7. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors.
    Savarino A; Cauda R; Cassone A
    J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the specificity of HIV protease: an application of Markov chain theory.
    Chou KC; Zhang CT
    J Protein Chem; 1993 Dec; 12(6):709-24. PubMed ID: 8136021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for specificity of retroviral proteases.
    Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT
    Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray structures of retroviral proteases and their inhibitor-bound complexes.
    Ringe D
    Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176
    [No Abstract]   [Full Text] [Related]  

  • 11. The HIV-1 protease as a therapeutic target for AIDS.
    Debouck C
    AIDS Res Hum Retroviruses; 1992 Feb; 8(2):153-64. PubMed ID: 1540403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor.
    Priestle JP; Fässler A; Rösel J; Tintelnot-Blomley M; Strop P; Grütter MG
    Structure; 1995 Apr; 3(4):381-9. PubMed ID: 7613867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral proteases as targets for chemotherapeutic intervention.
    Hellen CU; Wimmer E
    Curr Opin Biotechnol; 1992 Dec; 3(6):643-9. PubMed ID: 1369416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potency and selectivity of inhibition of human immunodeficiency virus protease by a small nonpeptide cyclic urea, DMP 323.
    Erickson-Viitanen S; Klabe RM; Cawood PG; O'Neal PL; Meek JL
    Antimicrob Agents Chemother; 1994 Jul; 38(7):1628-34. PubMed ID: 7979296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of substrates and inhibitors with a family of tethered HIV-1 and HIV-2 homo- and heterodimeric proteinases.
    Griffiths JT; Tomchak LA; Mills JS; Graves MC; Cook ND; Dunn BM; Kay J
    J Biol Chem; 1994 Feb; 269(7):4787-93. PubMed ID: 8106448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors.
    Calugi C; Guarna A; Trabocchi A
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):936-43. PubMed ID: 22803674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent HIV protease inhibitors containing a novel (hydroxyethyl)amide isostere.
    Beaulieu PL; Wernic D; Abraham A; Anderson PC; Bogri T; Bousquet Y; Croteau G; Guse I; Lamarre D; Liard F; Paris W; Thibeault D; Pav S; Tong L
    J Med Chem; 1997 Jul; 40(14):2164-76. PubMed ID: 9216835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potent human immunodeficiency virus type 1 protease inhibitors that utilize noncoded D-amino acids as P2/P3 ligands.
    Jungheim LN; Shepherd TA; Baxter AJ; Burgess J; Hatch SD; Lubbehusen P; Wiskerchen M; Muesing MA
    J Med Chem; 1996 Jan; 39(1):96-108. PubMed ID: 8568831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes.
    Sui Z; Salto R; Li J; Craik C; Ortiz de Montellano PR
    Bioorg Med Chem; 1993 Dec; 1(6):415-22. PubMed ID: 8087563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.