BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 8670143)

  • 1. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
    Strzelecka-Golaszewska H; Wozniak A; Hult T; Lindberg U
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):713-21. PubMed ID: 8670143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion.
    Strzelecka-Gołaszewska H; Moraczewska J; Khaitlina SY; Mossakowska M
    Eur J Biochem; 1993 Feb; 211(3):731-42. PubMed ID: 8436131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations.
    Nyitrai M; Hild G; Belágyi J; Somogyi B
    Biophys J; 1997 Oct; 73(4):2023-32. PubMed ID: 9336197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural reorganization of proteins revealed by radiolysis and mass spectrometry: G-actin solution structure is divalent cation dependent.
    Guan JQ; Almo SC; Reisler E; Chance MR
    Biochemistry; 2003 Oct; 42(41):11992-2000. PubMed ID: 14556630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofilin induced conformational changes in F-actin expose subdomain 2 to proteolysis.
    Muhlrad A; Kudryashov D; Michael Peyser Y; Bobkov AA; Almo SC; Reisler E
    J Mol Biol; 2004 Oct; 342(5):1559-67. PubMed ID: 15364581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transglutaminase-induced cross-linking between subdomain 2 of G-actin and the 636-642 lysine-rich loop of myosin subfragment 1.
    Eligula L; Chuang L; Phillips ML; Motoki M; Seguro K; Muhlrad A
    Biophys J; 1998 Feb; 74(2 Pt 1):953-63. PubMed ID: 9533706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions.
    Mossakowska M; Moraczewska J; Khaitlina S; Strzelecka-Golaszewska H
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):897-902. PubMed ID: 8435084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic properties of actin. Structural changes induced by beryllium fluoride.
    Muhlrad A; Cheung P; Phan BC; Miller C; Reisler E
    J Biol Chem; 1994 Apr; 269(16):11852-8. PubMed ID: 8163484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Ca2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin.
    Nyitrai M; Hild G; Lakos Z; Somogyi B
    Biophys J; 1998 May; 74(5):2474-81. PubMed ID: 9591673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the DNase-I-binding loop in dynamic properties of actin filament.
    Khaitlina SY; Strzelecka-Gołaszewska H
    Biophys J; 2002 Jan; 82(1 Pt 1):321-34. PubMed ID: 11751319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel 27/16 kDa form of subtilisin cleaved actin: structural and functional consequences of cleavage between Ser234 and Ser235.
    Vahdat A; Miller C; Phillips M; Muhlrad A; Reisler E
    FEBS Lett; 1995 May; 365(2-3):149-51. PubMed ID: 7781768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of subtilisin cleaved actin lacking the segment of residues 43-47 in the DNase I binding loop.
    Kiessling P; Jahn W; Maier G; Polzar B; Mannherz HG
    Biochemistry; 1995 Nov; 34(45):14834-42. PubMed ID: 7578093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divalent cation binding to the high- and low-affinity sites on G-actin.
    Zimmerle CT; Patane K; Frieden C
    Biochemistry; 1987 Oct; 26(20):6545-52. PubMed ID: 3427024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of tightly bound Mg2+ and Ca2+, nucleotides, and phalloidin on the microsecond torsional flexibility of F-actin.
    Rebello CA; Ludescher RD
    Biochemistry; 1998 Oct; 37(41):14529-38. PubMed ID: 9772181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis.
    Carlier MF; Pantaloni D; Korn ED
    J Biol Chem; 1986 Aug; 261(23):10785-92. PubMed ID: 2942544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin subfragment 1 and structural elements of G-actin: effects of S-1(A2) on sequences 39-52 and 61-69 in subdomain 2 of G-actin.
    Chen T; Haigentz M; Reisler E
    Biochemistry; 1992 Mar; 31(11):2941-6. PubMed ID: 1550820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of intramolecular cross-linking between glutamine-41 and lysine-50 on actin structure and function.
    Eli-Berchoer L; Hegyi G; Patthy A; Reisler E; Muhlrad A
    J Muscle Res Cell Motil; 2000; 21(5):405-14. PubMed ID: 11129431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between polymerizability and conformation in scallop beta-like actin and rabbit skeletal muscle alpha-actin.
    Khaitlina S; Antropova O; Kuznetsova I; Turoverov K; Collins JH
    Arch Biochem Biophys; 1999 Aug; 368(1):105-11. PubMed ID: 10415117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament.
    Khaitlina SY; Moraczewska J; Strzelecka-Gołaszewska H
    Eur J Biochem; 1993 Dec; 218(3):911-20. PubMed ID: 8281943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.