These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 8670212)

  • 1. A mechanism for action of extremely low frequency electromagnetic fields on biological systems.
    Balcavage WX; Alvager T; Swez J; Goff CW; Fox MT; Abdullyava S; King MW
    Biochem Biophys Res Commun; 1996 May; 222(2):374-8. PubMed ID: 8670212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between weak low frequency magnetic fields and cell membranes.
    Bauréus Koch CL; Sommarin M; Persson BR; Salford LG; Eberhardt JL
    Bioelectromagnetics; 2003 Sep; 24(6):395-402. PubMed ID: 12929158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of action of moderate-intensity static magnetic fields on biological systems.
    Rosen AD
    Cell Biochem Biophys; 2003; 39(2):163-73. PubMed ID: 14515021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microvillar ion channels: cytoskeletal modulation of ion fluxes.
    Lange K
    J Theor Biol; 2000 Oct; 206(4):561-84. PubMed ID: 11013115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that transduction of electromagnetic field is mediated by a force receptor.
    Marino AA; Carrubba S; Frilot C; Chesson AL
    Neurosci Lett; 2009 Mar; 452(2):119-23. PubMed ID: 19383425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. About the biological effects of high and extremely high frequency electromagnetic fields.
    Mileva K; Georgieva B; Radicheva N
    Acta Physiol Pharmacol Bulg; 2003; 27(2-3):89-100. PubMed ID: 14570154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells.
    Falone S; Grossi MR; Cinque B; D'Angelo B; Tettamanti E; Cimini A; Di Ilio C; Amicarelli F
    Int J Biochem Cell Biol; 2007; 39(11):2093-106. PubMed ID: 17662640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical evaluation of cell membrane ion channel activation by applied magnetic fields.
    St Pierre TG; Dobson J
    Eur Biophys J; 2000; 29(6):455-6. PubMed ID: 11081406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radio frequency rectification on membrane bound pores.
    Ramachandran S; Blick RH; van der Weide DW
    Nanotechnology; 2010 Feb; 21(7):75201. PubMed ID: 20081294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic gating in ion channels.
    McLeod BR; Liboff AR; Smith SD
    J Theor Biol; 1992 Sep; 158(1):15-31. PubMed ID: 1282185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal ion channels and their sensitivity to extremely low frequency weak electric field effects.
    Mathie A; Kennard LE; Veale EL
    Radiat Prot Dosimetry; 2003; 106(4):311-6. PubMed ID: 14690272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A probability wave theory on the ion movement across cell membrane].
    Zhang H; Xu J; Niu Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):257-61. PubMed ID: 17591237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can electromagnetic radiations induce changes in the kinetics of voltage-dependent ion channels?
    da Costa JG; de Moura MA; Consoni L; Nogueira RA
    Cell Mol Biol (Noisy-le-grand); 2002 Jul; 48(5):577-83. PubMed ID: 12146715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A common pathway for charge transport through voltage-sensing domains.
    Chanda B; Bezanilla F
    Neuron; 2008 Feb; 57(3):345-51. PubMed ID: 18255028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reliability of relative anion-cation permeabilities deduced from reversal (dilution) potential measurements in ion channel studies.
    Barry PH
    Cell Biochem Biophys; 2006; 46(2):143-54. PubMed ID: 17012755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism for action of oscillating electric fields on cells.
    Panagopoulos DJ; Messini N; Karabarbounis A; Philippetis AL; Margaritis LH
    Biochem Biophys Res Commun; 2000 Jun; 272(3):634-40. PubMed ID: 10860806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs).
    Bassett CA
    Crit Rev Biomed Eng; 1989; 17(5):451-529. PubMed ID: 2686932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells.
    Rosen AD
    Bioelectromagnetics; 2003 Oct; 24(7):517-23. PubMed ID: 12955757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cylindrical cell membranes in uniform applied electric fields: validation of a transport lattice method.
    Stewart DA; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1643-53. PubMed ID: 16235650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.
    Vaughan TE; Weaver JC
    Bioelectromagnetics; 2005 May; 26(4):305-22. PubMed ID: 15832332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.