These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 8670672)

  • 21. Dissociable effects of anterior and posterior cingulate cortex lesions on the acquisition of a conditional visual discrimination: facilitation of early learning vs. impairment of late learning.
    Bussey TJ; Muir JL; Everitt BJ; Robbins TW
    Behav Brain Res; 1996 Dec; 82(1):45-56. PubMed ID: 9021069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociation of attention in learning and action: effects of lesions of the amygdala central nucleus, medial prefrontal cortex, and posterior parietal cortex.
    Maddux JM; Kerfoot EC; Chatterjee S; Holland PC
    Behav Neurosci; 2007 Feb; 121(1):63-79. PubMed ID: 17324051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cognitive control network: Integrated cortical regions with dissociable functions.
    Cole MW; Schneider W
    Neuroimage; 2007 Aug; 37(1):343-60. PubMed ID: 17553704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for neocortical involvement in reference memory.
    Kesner RP; DiMattia BV; Crutcher KA
    Behav Neural Biol; 1987 Jan; 47(1):40-53. PubMed ID: 3566691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats.
    Baunez C; Robbins TW
    Eur J Neurosci; 1997 Oct; 9(10):2086-99. PubMed ID: 9421169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat.
    Kesner RP; Farnsworth G; DiMattia BV
    Behav Neurosci; 1989 Oct; 103(5):956-61. PubMed ID: 2803562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Place and taste aversion learning: role of basal forebrain, parietal cortex, and amygdala.
    Kesner RP; Berman RF; Tardif R
    Brain Res Bull; 1992; 29(3-4):345-53. PubMed ID: 1393607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron.
    Muir JL; Everitt BJ; Robbins TW
    Psychopharmacology (Berl); 1995 Mar; 118(1):82-92. PubMed ID: 7597126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions.
    Inglis WL; Olmstead MC; Robbins TW
    Behav Brain Res; 2001 Sep; 123(2):117-31. PubMed ID: 11399325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions.
    Passetti F; Chudasama Y; Robbins TW
    Cereb Cortex; 2002 Dec; 12(12):1254-68. PubMed ID: 12427677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prolonged reaction time to a verbal working memory task predicts increased power of posterior parietal cortical activation.
    Honey GD; Bullmore ET; Sharma T
    Neuroimage; 2000 Nov; 12(5):495-503. PubMed ID: 11034857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans.
    Rogers RD; Andrews TC; Grasby PM; Brooks DJ; Robbins TW
    J Cogn Neurosci; 2000 Jan; 12(1):142-62. PubMed ID: 10769312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociable roles of the medial prefrontal cortex, the anterior cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial reversal of three-choice discrimination in rats.
    Kosaki Y; Watanabe S
    Behav Brain Res; 2012 Feb; 227(1):81-90. PubMed ID: 22061799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi on performance of a 5-choice serial reaction time task in rats: implications for theories of selective attention and arousal.
    Cole BJ; Robbins TW
    Behav Brain Res; 1989 Jun; 33(2):165-79. PubMed ID: 2504222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of cooling parietal cortex on prefrontal units in delay tasks.
    Quintana J; Fuster JM; Yajeya J
    Brain Res; 1989 Nov; 503(1):100-10. PubMed ID: 2611643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of visual and auditory motion processing in human cerebral cortex.
    Lewis JW; Beauchamp MS; DeYoe EA
    Cereb Cortex; 2000 Sep; 10(9):873-88. PubMed ID: 10982748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissociable effects of frontal cortical lesions on measures of visuospatial attention and spatial working memory in the rat.
    Bailey KR; Mair RG
    Cereb Cortex; 2004 Sep; 14(9):974-85. PubMed ID: 15084497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical substrates supporting visual search in humans.
    Eglin M; Robertson LC; Knight RT
    Cereb Cortex; 1991; 1(3):262-72. PubMed ID: 1822736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.