These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 8670800)
1. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants. Baum G; Lev-Yadun S; Fridmann Y; Arazi T; Katsnelson H; Zik M; Fromm H EMBO J; 1996 Jun; 15(12):2988-96. PubMed ID: 8670800 [TBL] [Abstract][Full Text] [Related]
2. Purification of calmodulin from rice bran and activation of glutamate decarboxylase by Ca2+/calmodulin. Wang L; Liu M; Lv YG; Zhang H J Sci Food Agric; 2010 Mar; 90(4):669-75. PubMed ID: 20355097 [TBL] [Abstract][Full Text] [Related]
3. C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells. Akama K; Takaiwa F J Exp Bot; 2007; 58(10):2699-707. PubMed ID: 17562689 [TBL] [Abstract][Full Text] [Related]
4. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Fait A; Nesi AN; Angelovici R; Lehmann M; Pham PA; Song L; Haslam RP; Napier JA; Galili G; Fernie AR Plant Physiol; 2011 Nov; 157(3):1026-42. PubMed ID: 21921115 [TBL] [Abstract][Full Text] [Related]
5. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. Baum G; Chen Y; Arazi T; Takatsuji H; Fromm H J Biol Chem; 1993 Sep; 268(26):19610-7. PubMed ID: 8366104 [TBL] [Abstract][Full Text] [Related]
6. C-terminal residues of plant glutamate decarboxylase are required for oligomerization of a high-molecular weight complex and for activation by calcium/calmodulin. Zik M; Fridmann-Sirkis Y; Fromm H Biochim Biophys Acta; 2006 May; 1764(5):872-6. PubMed ID: 16603423 [TBL] [Abstract][Full Text] [Related]
7. Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Arazi T; Baum G; Snedden WA; Shelp BJ; Fromm H Plant Physiol; 1995 Jun; 108(2):551-61. PubMed ID: 7610159 [TBL] [Abstract][Full Text] [Related]
8. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Ling V; Snedden WA; Shelp BJ; Assmann SM Plant Cell; 1994 Aug; 6(8):1135-43. PubMed ID: 7919983 [TBL] [Abstract][Full Text] [Related]
9. Cloning and characterization of a tobacco cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase. Yun SJ; Oh SH Mol Cells; 1998 Apr; 8(2):125-9. PubMed ID: 9638642 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for simultaneous binding of two carboxy-terminal peptides of plant glutamate decarboxylase to calmodulin. Yap KL; Yuan T; Mal TK; Vogel HJ; Ikura M J Mol Biol; 2003 Apr; 328(1):193-204. PubMed ID: 12684008 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic effects from the expression of a deregulated AtGAD1 transgene and GABA pathway suppression mutants in maize. S RM; Bedair MF; Li H; Duff SMG PLoS One; 2021; 16(12):e0259365. PubMed ID: 34871322 [TBL] [Abstract][Full Text] [Related]
12. A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. Gut H; Dominici P; Pilati S; Astegno A; Petoukhov MV; Svergun DI; Grütter MG; Capitani G J Mol Biol; 2009 Sep; 392(2):334-51. PubMed ID: 19580813 [TBL] [Abstract][Full Text] [Related]
13. Calmodulin-dependent and calmodulin-independent glutamate decarboxylases in apple fruit. Trobacher CP; Zarei A; Liu J; Clark SM; Bozzo GG; Shelp BJ BMC Plant Biol; 2013 Sep; 13():144. PubMed ID: 24074460 [TBL] [Abstract][Full Text] [Related]
14. Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. Coleman ST; Fang TK; Rovinsky SA; Turano FJ; Moye-Rowley WS J Biol Chem; 2001 Jan; 276(1):244-50. PubMed ID: 11031268 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of glutamate decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. MacGregor KB; Shelp BJ; Peiris S; Bown AW J Chem Ecol; 2003 Sep; 29(9):2177-82. PubMed ID: 14584684 [TBL] [Abstract][Full Text] [Related]
16. Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Zik M; Arazi T; Snedden WA; Fromm H Plant Mol Biol; 1998 Aug; 37(6):967-75. PubMed ID: 9700069 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of a cDNA encoding calcium/calmodulin-dependent glutamate decarboxylase from Scutellaria baicalensis. Kim YB; Uddin MR; Kwon DY; Lee MK; Kim SJ; Lee C; Park SU Nat Prod Commun; 2013 Sep; 8(9):1233-6. PubMed ID: 24273854 [TBL] [Abstract][Full Text] [Related]
18. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases. Monnerie H; Le Roux PD Exp Neurol; 2008 Sep; 213(1):145-53. PubMed ID: 18599042 [TBL] [Abstract][Full Text] [Related]
19. Activation of a recombinant petunia glutamate decarboxylase by calcium/calmodulin or by a monoclonal antibody which recognizes the calmodulin binding domain. Snedden WA; Koutsia N; Baum G; Fromm H J Biol Chem; 1996 Feb; 271(8):4148-53. PubMed ID: 8626755 [TBL] [Abstract][Full Text] [Related]
20. Functional roles of the hexamer organization of plant glutamate decarboxylase. Astegno A; Capitani G; Dominici P Biochim Biophys Acta; 2015 Sep; 1854(9):1229-37. PubMed ID: 25614413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]