These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 8670849)
1. An RNA conformational change between the two chemical steps of group II self-splicing. Chanfreau G; Jacquier A EMBO J; 1996 Jul; 15(13):3466-76. PubMed ID: 8670849 [TBL] [Abstract][Full Text] [Related]
2. Multiple tertiary interactions involving domain II of group II self-splicing introns. Costa M; Déme E; Jacquier A; Michel F J Mol Biol; 1997 Apr; 267(3):520-36. PubMed ID: 9126835 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Mei R; Herschlag D Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540 [TBL] [Abstract][Full Text] [Related]
4. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Moore MJ; Sharp PA Nature; 1993 Sep; 365(6444):364-8. PubMed ID: 8397340 [TBL] [Abstract][Full Text] [Related]
5. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Golden BL; Cech TR Biochemistry; 1996 Mar; 35(12):3754-63. PubMed ID: 8619996 [TBL] [Abstract][Full Text] [Related]
6. Effect of deletions at structural domains of group II intron bI1 on self-splicing in vitro. Bachl J; Schmelzer C J Mol Biol; 1990 Mar; 212(1):113-25. PubMed ID: 2319592 [TBL] [Abstract][Full Text] [Related]
7. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. Strauss-Soukup JK; Strobel SA J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738 [TBL] [Abstract][Full Text] [Related]
8. Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. Boudvillain M; Pyle AM EMBO J; 1998 Dec; 17(23):7091-104. PubMed ID: 9843513 [TBL] [Abstract][Full Text] [Related]
9. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Stahley MR; Strobel SA Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179 [TBL] [Abstract][Full Text] [Related]
10. Base-pairing interactions involving the 5' and 3'-terminal nucleotides of group II self-splicing introns. Jacquier A; Michel F J Mol Biol; 1990 Jun; 213(3):437-47. PubMed ID: 2191139 [TBL] [Abstract][Full Text] [Related]
11. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron. Dème E; Nolte A; Jacquier A Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371 [TBL] [Abstract][Full Text] [Related]
12. The receptor for branch-site docking within a group II intron active site. Hamill S; Pyle AM Mol Cell; 2006 Sep; 23(6):831-40. PubMed ID: 16973435 [TBL] [Abstract][Full Text] [Related]
13. Structural insights into group II intron catalysis and branch-site selection. Zhang L; Doudna JA Science; 2002 Mar; 295(5562):2084-8. PubMed ID: 11859154 [TBL] [Abstract][Full Text] [Related]
14. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. Murphy FL; Cech TR J Mol Biol; 1994 Feb; 236(1):49-63. PubMed ID: 8107125 [TBL] [Abstract][Full Text] [Related]
15. Functional group substitutions of the branchpoint adenosine in a nuclear pre-mRNA and a group II intron. Gaur RK; McLaughlin LW; Green MR RNA; 1997 Aug; 3(8):861-9. PubMed ID: 9257645 [TBL] [Abstract][Full Text] [Related]
16. Productive folding to the native state by a group II intron ribozyme. Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of domain 6 from a self-splicing group II intron ribozyme: a Mg(2+) binding site is located close to the stacked branch adenosine. Erat MC; Zerbe O; Fox T; Sigel RK Chembiochem; 2007 Feb; 8(3):306-14. PubMed ID: 17200997 [TBL] [Abstract][Full Text] [Related]
18. Group II intron in Bacillus cereus has an unusual 3' extension and splices 56 nucleotides downstream of the predicted site. Stabell FB; Tourasse NJ; Ravnum S; Kolstø AB Nucleic Acids Res; 2007; 35(5):1612-23. PubMed ID: 17301069 [TBL] [Abstract][Full Text] [Related]
19. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. Ho Y; Waring RB J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698 [TBL] [Abstract][Full Text] [Related]
20. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns. Shen H; Green MR Nat Struct Mol Biol; 2007 Jul; 14(7):597-603. PubMed ID: 17603499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]