These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 8672293)
1. Survival of luxAB-marked Alcaligenes eutrophus H850 in PCB-contaminated soil and sediment. Van Dyke MI; Lee H; Trevors JT J Chem Technol Biotechnol; 1996 Feb; 65(2):115-22. PubMed ID: 8672293 [TBL] [Abstract][Full Text] [Related]
2. Molecular diagnostics for polychlorinated biphenyl degradation in contaminated soils. Layton AC; Lajoie CA; Easter JP; Jernigan R; Beck MJ; Sayler GS Ann N Y Acad Sci; 1994 May; 721():407-22. PubMed ID: 8010689 [TBL] [Abstract][Full Text] [Related]
3. Survival of lux-lac-marked biosurfactant-producing Pseudomonas aeruginosa UG2L in soil monitored by nonselective plating and PCR. Flemming CA; Leung KT; Lee H; Trevors JT; Greer CW Appl Environ Microbiol; 1994 May; 60(5):1606-13. PubMed ID: 8017939 [TBL] [Abstract][Full Text] [Related]
4. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria. Luepromchai E; Singer AC; Yang CH; Crowley DE FEMS Microbiol Ecol; 2002 Sep; 41(3):191-7. PubMed ID: 19709253 [TBL] [Abstract][Full Text] [Related]
5. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Xu L; Teng Y; Li ZG; Norton JM; Luo YM Sci Total Environ; 2010 Feb; 408(5):1007-13. PubMed ID: 19995667 [TBL] [Abstract][Full Text] [Related]
6. Reductive microbial dechlorination of indigenous polychlorinated biphenyls in soil using a sediment-free inoculum. Klasson KT; Barton JW; Evans BS; Reeves ME Biotechnol Prog; 1996; 12(3):310-5. PubMed ID: 8652118 [TBL] [Abstract][Full Text] [Related]
7. Sequence similarities in the genes encoding polychlorinated biphenyl degradation by Pseudomonas strain LB400 and Alcaligenes eutrophus H850. Yates JR; Mondello FJ J Bacteriol; 1989 Mar; 171(3):1733-5. PubMed ID: 2493455 [TBL] [Abstract][Full Text] [Related]
8. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Luo W; D'Angelo EM; Coyne MS Chemosphere; 2008 Jan; 70(3):364-73. PubMed ID: 17870145 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Chekol T; Vough LR; Chaney RL Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198 [TBL] [Abstract][Full Text] [Related]
10. Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Singer AC; Gilbert ES; Luepromchai E; Crowley DE Appl Microbiol Biotechnol; 2000 Dec; 54(6):838-43. PubMed ID: 11152078 [TBL] [Abstract][Full Text] [Related]
11. Effects of randomly methylated-beta-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil. Fava F; Ciccotosto VF Appl Microbiol Biotechnol; 2002 Mar; 58(3):393-9. PubMed ID: 11935193 [TBL] [Abstract][Full Text] [Related]
12. Construction and application of chromosomally integrated lac-lux gene markers to monitor the fate of a 2,4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils. Masson L; Comeau Y; Brousseau R; Samson R; Greer C Microb Releases; 1993 Mar; 1(4):209-16. PubMed ID: 7506623 [TBL] [Abstract][Full Text] [Related]
13. Polychlorinated biphenyl (PCB) degradation and persistence of a gfp-marked Ralstonia eutropha H850 in PCB-contaminated soil. Abbey AM; Beaudette LA; Lee H; Trevors JT Appl Microbiol Biotechnol; 2003 Dec; 63(2):222-30. PubMed ID: 12898060 [TBL] [Abstract][Full Text] [Related]
14. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Bedard DL; Haberl ML; May RJ; Brennan MJ Appl Environ Microbiol; 1987 May; 53(5):1103-12. PubMed ID: 3111366 [TBL] [Abstract][Full Text] [Related]
15. Degradation of PCB congeners by bacterial strains. Rein A; Fernqvist MM; Mayer P; Trapp S; Bittens M; Karlson UG Appl Microbiol Biotechnol; 2007 Nov; 77(2):469-81. PubMed ID: 17885752 [TBL] [Abstract][Full Text] [Related]
16. Rapid method for purification of soil DNA for hybridization and PCR analysis. Dijkmans R; Jagers A; Kreps S; Collard JM; Mergeay M Microb Releases; 1993 Jun; 2(1):29-34. PubMed ID: 8261167 [TBL] [Abstract][Full Text] [Related]
17. Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Fava F; Bertin L; Fedi S; Zannoni D Biotechnol Bioeng; 2003 Feb; 81(4):381-90. PubMed ID: 12491523 [TBL] [Abstract][Full Text] [Related]
18. Use of potassium tellurite for testing the survival and viability of Pseudomonas pseudoalcaligenes KF707 in soil microcosms contaminated with polychlorinated biphenyls. Zanaroli G; Fedi S; Carnevali M; Fava F; Zannoni D Res Microbiol; 2002; 153(6):353-60. PubMed ID: 12234009 [TBL] [Abstract][Full Text] [Related]
19. Characterization of polychlorinated biphenyl-degrading bacteria isolated from contaminated sites in Czechia. Totevová S; Prouza M; Burkhard J; Demnerová K; Brenner V Folia Microbiol (Praha); 2002; 47(3):247-54. PubMed ID: 12094733 [TBL] [Abstract][Full Text] [Related]
20. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. Mishra S; Sarma PM; Lal B FEMS Microbiol Lett; 2004 Jun; 235(2):323-31. PubMed ID: 15183881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]