These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8672417)
21. Apparent specificity of bovine seminal ribonucleases can depend on the conditions used for the isolation of substrate. Ramakrishna T; Vijayarangam D; Sitaram N; Pandit MW; Bhargava PM Biochem Int; 1992 Feb; 26(1):125-33. PubMed ID: 1377468 [TBL] [Abstract][Full Text] [Related]
22. The antitumor action of seminal ribonuclease and its quaternary conformations. Cafaro V; De Lorenzo C; Piccoli R; Bracale A; Mastronicola MR; Di Donato A; D'Alessio G FEBS Lett; 1995 Feb; 359(1):31-4. PubMed ID: 7851526 [TBL] [Abstract][Full Text] [Related]
23. Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Shapiro R; Vallee BL Biochemistry; 1991 Feb; 30(8):2246-55. PubMed ID: 1998683 [TBL] [Abstract][Full Text] [Related]
24. Bovine seminal ribonuclease induces in vitro concentration dependent apoptosis in stimulated human lymphocytes and cells from human tumor cell lines. Marinov I; Soucek J Neoplasma; 2000; 47(5):294-8. PubMed ID: 11130246 [TBL] [Abstract][Full Text] [Related]
25. Purification and characterization of an extracellular, uracil specific ribonuclease from a Bizionia species isolated from the marine environment of the Sundarbans. Sana B; Ghosh D; Saha M; Mukherjee J Microbiol Res; 2008; 163(1):31-8. PubMed ID: 16644192 [TBL] [Abstract][Full Text] [Related]
26. A misfolded but active dimer of bovine seminal ribonuclease. Kim JS; Raines RT Eur J Biochem; 1994 Aug; 224(1):109-14. PubMed ID: 8076630 [TBL] [Abstract][Full Text] [Related]
27. Interactions of the cytotoxic RNase A dimers with the cytosolic ribonuclease inhibitor. Naddeo M; Vitagliano L; Russo A; Gotte G; D'Alessio G; Sorrentino S FEBS Lett; 2005 May; 579(12):2663-8. PubMed ID: 15862306 [TBL] [Abstract][Full Text] [Related]
28. Human semen ribonuclease. Location, properties and inhibition by sodium dodecyl sulfate, zinc sulfate and EDTA. Mujica A; Romero G; Hernandez-Montes H Int J Fertil; 1976; (2):109-13. PubMed ID: 8382 [TBL] [Abstract][Full Text] [Related]
29. Effect of native and modified bull seminal ribonuclease on tumour and testicular cells and phytohaemagglutinin-stimulated pig lymphocytes. Matousek J; Stanĕk R; Dostál J; Mácha J Folia Biol (Praha); 1979; 25(1):36-48. PubMed ID: 371993 [TBL] [Abstract][Full Text] [Related]
30. Swapping structural determinants of ribonucleases: an energetic analysis of the hinge peptide 16-22. Mazzarella L; Vitagliano L; Zagari A Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3799-803. PubMed ID: 7731986 [TBL] [Abstract][Full Text] [Related]
31. Catalytic activity of bovine seminal ribonuclease is essential for its immunosuppressive and other biological activities. Kim JS; Soucek J; Matousek J; Raines RT Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):547-50. PubMed ID: 7772040 [TBL] [Abstract][Full Text] [Related]
32. Monomer-dimer equilibrium of uncomplemented M15 beta-galactosidase from Escherichia coli. Gallagher CN; Huber RE Biochemistry; 1997 Feb; 36(6):1281-6. PubMed ID: 9063875 [TBL] [Abstract][Full Text] [Related]
33. Relationships between nonhyperbolic kinetics and dimeric structure in ribonucleases. Piccoli R; D'Alessio G J Biol Chem; 1984 Jan; 259(2):693-5. PubMed ID: 6693391 [TBL] [Abstract][Full Text] [Related]
34. Inhibitory effects of RraA and RraB on RNAse E-related enzymes imply conserved functions in the regulated enzymatic cleavage of RNA. Yeom JH; Go H; Shin E; Kim HL; Han SH; Moore CJ; Bae J; Lee K FEMS Microbiol Lett; 2008 Aug; 285(1):10-5. PubMed ID: 18510556 [TBL] [Abstract][Full Text] [Related]
35. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces. Schubert M; Edge RE; Lario P; Cook MA; Strynadka NC; Mackie GA; McIntosh LP J Mol Biol; 2004 Jul; 341(1):37-54. PubMed ID: 15312761 [TBL] [Abstract][Full Text] [Related]
36. Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain. Callaghan AJ; Grossmann JG; Redko YU; Ilag LL; Moncrieffe MC; Symmons MF; Robinson CV; McDowall KJ; Luisi BF Biochemistry; 2003 Dec; 42(47):13848-55. PubMed ID: 14636052 [TBL] [Abstract][Full Text] [Related]
37. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity. Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868 [TBL] [Abstract][Full Text] [Related]
38. A potential allosteric subsite generated by domain swapping in bovine seminal ribonuclease. Vitagliano L; Adinolfi S; Sica F; Merlino A; Zagari A; Mazzarella L J Mol Biol; 1999 Oct; 293(3):569-77. PubMed ID: 10543951 [TBL] [Abstract][Full Text] [Related]
39. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS. Blanchard V; Frank M; Leeflang BR; Boelens R; Kamerling JP Biochemistry; 2008 Mar; 47(11):3435-46. PubMed ID: 18293928 [TBL] [Abstract][Full Text] [Related]
40. pH gradient electrophoresis of basic ribonucleases in sealed slab polyacrylamide gels: detection and inhibition of enzyme activity in the gel. Nadano D; Yasuda T; Sawazaki K; Takeshita H; Kishi K Electrophoresis; 1996 Jan; 17(1):104-9. PubMed ID: 8907526 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]