These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
411 related articles for article (PubMed ID: 8672429)
1. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases. Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429 [TBL] [Abstract][Full Text] [Related]
2. Identification of interactions involved in the generation of nucleophilic reactivity and of catalytic competence in the catalytic site Cys/His ion pair of papain. Hussain S; Khan A; Gul S; Resmini M; Verma CS; Thomas EW; Brocklehurst K Biochemistry; 2011 Dec; 50(49):10732-42. PubMed ID: 22044167 [TBL] [Abstract][Full Text] [Related]
3. Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158. Gul S; Hussain S; Thomas MP; Resmini M; Verma CS; Thomas EW; Brocklehurst K Biochemistry; 2008 Feb; 47(7):2025-35. PubMed ID: 18225918 [TBL] [Abstract][Full Text] [Related]
4. Rapid kinetic studies and structural determination of a cysteine proteinase mutant imply that residue 158 in caricain has a major effect upon the ability of the active site histidine to protonate a dipyridyl probe. Katerelos NA; Goodenough PW Biochemistry; 1996 Nov; 35(47):14763-72. PubMed ID: 8942638 [TBL] [Abstract][Full Text] [Related]
5. The double catalytic triad, Cys25-His159-Asp158 and Cys25-His159-Asn175, in papain catalysis: role of Asp158 and Asn175. Wang J; Xiang YF; Lim C Protein Eng; 1994 Jan; 7(1):75-82. PubMed ID: 8140097 [TBL] [Abstract][Full Text] [Related]
6. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization. Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802 [TBL] [Abstract][Full Text] [Related]
7. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding. Bürgisser DM; Thöny B; Redweik U; Hess D; Heizmann CW; Huber R; Nar H J Mol Biol; 1995 Oct; 253(2):358-69. PubMed ID: 7563095 [TBL] [Abstract][Full Text] [Related]
8. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis. Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880 [TBL] [Abstract][Full Text] [Related]
9. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
10. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Nicolas A; Egmond M; Verrips CT; de Vlieg J; Longhi S; Cambillau C; Martinez C Biochemistry; 1996 Jan; 35(2):398-410. PubMed ID: 8555209 [TBL] [Abstract][Full Text] [Related]
11. Structural contributions of delta class glutathione transferase active-site residues to catalysis. Wongsantichon J; Robinson RC; Ketterman AJ Biochem J; 2010 Apr; 428(1):25-32. PubMed ID: 20196771 [TBL] [Abstract][Full Text] [Related]
12. Isolation and primary structure of the CCI papain-like cysteine proteinases from the latex of Carica candamarcensis hook. Walraevens V; Vandermeers-Piret MC; Vandermeers A; Gourlet P; Robberecht P Biol Chem; 1999 Apr; 380(4):485-8. PubMed ID: 10355634 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of human procathepsin X: a cysteine protease with the proregion covalently linked to the active site cysteine. Sivaraman J; Nägler DK; Zhang R; Ménard R; Cygler M J Mol Biol; 2000 Jan; 295(4):939-51. PubMed ID: 10656802 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the substrate-recognition mode of aromatic amino acid aminotransferase by combined use of quasisubstrates and site-directed mutagenesis: systematic hydroxy-group addition/deletion studies to probe the enzyme-substrate interactions. Hayashi H; Inoue K; Mizuguchi H; Kagamiyama H Biochemistry; 1996 May; 35(21):6754-61. PubMed ID: 8639626 [TBL] [Abstract][Full Text] [Related]
15. Probing the sterol binding site of soybean sterol methyltransferase by site-directed mutagenesis: functional analysis of conserved aromatic amino acids in Region 1. Nes WD; Sinha A; Jayasimha P; Zhou W; Song Z; Dennis AL Arch Biochem Biophys; 2006 Apr; 448(1-2):23-30. PubMed ID: 16271698 [TBL] [Abstract][Full Text] [Related]
16. The importance of the second hairpin loop of cystatin C for proteinase binding. Characterization of the interaction of Trp-106 variants of the inhibitor with cysteine proteinases. Björk I; Brieditis I; Raub-Segall E; Pol E; Håkansson K; Abrahamson M Biochemistry; 1996 Aug; 35(33):10720-6. PubMed ID: 8718861 [TBL] [Abstract][Full Text] [Related]
17. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris. Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866 [TBL] [Abstract][Full Text] [Related]
18. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori. Natarajan S; Sierks MR Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145 [TBL] [Abstract][Full Text] [Related]
19. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity. Brömme D; Bonneau PR; Lachance P; Storer AC J Biol Chem; 1994 Dec; 269(48):30238-42. PubMed ID: 7982933 [TBL] [Abstract][Full Text] [Related]
20. Understanding the P1' specificity of the matrix metalloproteinases: effect of S1' pocket mutations in matrilysin and stromelysin-1. Welch AR; Holman CM; Huber M; Brenner MC; Browner MF; Van Wart HE Biochemistry; 1996 Aug; 35(31):10103-9. PubMed ID: 8756473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]