These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 8672433)

  • 1. Physical determinants of intermembrane protein transfer.
    Waters SI; Sen R; Brunauer LS; Huestis WH
    Biochemistry; 1996 Apr; 35(13):4002-8. PubMed ID: 8672433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative composition and characterization of the proteins in membrane vesicles released from erythrocytes by dimyristoylphosphatidylcholine. A membrane system without cytoskeleton.
    Weitz M; Bjerrum OJ; Ott P; Brodbeck U
    J Cell Biochem; 1982; 19(2):179-91. PubMed ID: 6184380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of selective release of membrane proteins from human erythrocytes in the presence of liposomes.
    Suzuki K; Okumura Y
    Arch Biochem Biophys; 2000 Jul; 379(2):344-52. PubMed ID: 10898954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermembrane protein transfer. Band 3, the erythrocyte anion transporter, transfers in native orientation from human red blood cells into the bilayer of phospholipid vesicles.
    Huestis WH; Newton AC
    J Biol Chem; 1986 Dec; 261(34):16274-8. PubMed ID: 3782118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of liposomes with human erythrocyte ghosts.
    Greidziak M; Ehrke R; Baust G; Torchilin VP; Lasch J
    Biomed Biochim Acta; 1990; 49(4):189-200. PubMed ID: 2403338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of band 3, the erythrocyte anion transporter, between phospholipid vesicles and cells.
    Newton AC; Cook SL; Huestis WH
    Biochemistry; 1983 Dec; 22(26):6110-7. PubMed ID: 6661430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteome of red cell membranes and vesicles during storage in blood bank conditions.
    Bosman GJ; Lasonder E; Luten M; Roerdinkholder-Stoelwinder B; Novotný VM; Bos H; De Grip WJ
    Transfusion; 2008 May; 48(5):827-35. PubMed ID: 18346024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Protein changes of the erythrocyte membrane during blood preservation].
    Stibenz D; Brox D; Geyer G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):459-71. PubMed ID: 6159283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artefacts due to sodium dodecylsulfate polyacrylamide gel electrophoresis in the study of human erythrocyte membrane calcium binding protein.
    Boivin P; Bernard JF; Bournier O
    Biomedicine; 1976 Dec; 25(9):315. PubMed ID: 1000037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of phospholipid scramblase activity from human blood platelets.
    Comfurius P; Williamson P; Smeets EF; Schlegel RA; Bevers EM; Zwaal RF
    Biochemistry; 1996 Jun; 35(24):7631-4. PubMed ID: 8672463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some characteristics of the residue obtained after pronase treatment of sheep erythrocyte membranes. I. Protein and phospholipid patterns.
    Nanni G; Pala V; Cinollo G; Marinari UM; Casu A
    Ital J Biochem; 1977; 26(3):215-31. PubMed ID: 914502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronology of the formation of vesicles and membrane protein aggregates during erythrocyte aging.
    Ghailani N; Guillemin C; Vigneron C
    Nouv Rev Fr Hematol (1978); 1995; 37(6):313-9. PubMed ID: 8907625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An immunochemical approach for the analysis of membrane protein alterations in Ca2+-loaded human erythrocytes.
    Bjerrum OJ; Hawkins M; Swanson P; Griffin M; Lorand L
    J Supramol Struct Cell Biochem; 1981; 16(3):289-301. PubMed ID: 7310899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphoma-vesicle interactions: vesicle adsorption, membrane fragmentation, and intermembrane protein transfer.
    Newton AC; Huestis WH
    Biochemistry; 1988 Jun; 27(13):4645-55. PubMed ID: 3167007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of membrane and plasma proteins in the spontaneously hypertensive rat].
    Cloix JF; Devynck MA; Funck-Brentano JL; Meyer P
    C R Seances Acad Sci III; 1982 Mar; 294(13):661-4. PubMed ID: 6812864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes.
    Marczak A; Jóźwiak Z
    Cancer Lett; 2008 Feb; 260(1-2):118-26. PubMed ID: 18060688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane skeleton and diminution of transmembrane proteins and calmodulin in erythrocytic vesicles.
    Stibenz D; Klinger R; Wetzker R
    Acta Histochem Suppl; 1986; 33():115-21. PubMed ID: 3090618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Modulation of the interaction between band 3 and the cytoskeleton by binding wheat germ agglutinin to erythrocyte membranes].
    Bonnet D; Begard E; Douzou P
    C R Seances Acad Sci III; 1982 Oct; 295(5):351-4. PubMed ID: 6817871
    [No Abstract]   [Full Text] [Related]  

  • 19. Sterol carrier protein-2-facilitated intermembrane transfer of cholesterol- and phospholipid-derived hydroperoxides.
    Vila A; Levchenko VV; Korytowski W; Girotti AW
    Biochemistry; 2004 Oct; 43(39):12592-605. PubMed ID: 15449949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and partial characterization of a high molecular weight red cell membrane protein complex normally removed by the spleen.
    Lux SE; John KM
    Blood; 1977 Oct; 50(4):625-41. PubMed ID: 198046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.