BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8672505)

  • 1. Electrogenic K+ transport by the Kdp-ATPase of Escherichia coli.
    Fendler K; Dröse S; Altendorf K; Bamberg E
    Biochemistry; 1996 Jun; 35(24):8009-17. PubMed ID: 8672505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Kdp-ATPase of Escherichia coli mediates an ATP-dependent, K+-independent electrogenic partial reaction.
    Fendler K; Dröse S; Epstein W; Bamberg E; Altendorf K
    Biochemistry; 1999 Feb; 38(6):1850-6. PubMed ID: 10026265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of the Kdp-ATPase of Escherichia coli.
    Altendorf K; Gassel M; Puppe W; Möllenkamp T; Zeeck A; Boddien C; Fendler K; Bamberg E; Dröse S
    Acta Physiol Scand Suppl; 1998 Aug; 643():137-46. PubMed ID: 9789555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved dipole in transmembrane helix 5 of KdpB in the Escherichia coli KdpFABC P-type ATPase is crucial for coupling and the electrogenic K+-translocation step.
    Becker D; Fendler K; Altendorf K; Greie JC
    Biochemistry; 2007 Dec; 46(48):13920-8. PubMed ID: 17994765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex.
    Schrader M; Fendler K; Bamberg E; Gassel M; Epstein W; Altendorf K; Dröse S
    Biophys J; 2000 Aug; 79(2):802-13. PubMed ID: 10920013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. K+-dependence of electrogenic transport by the NaK-ATPase.
    Gropp T; Cornelius F; Fendler K
    Biochim Biophys Acta; 1998 Jan; 1368(2):184-200. PubMed ID: 9459597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-Dependent human erythrocyte glutathione-conjugate transporter. II. Functional reconstitution of transport activity.
    Awasthi S; Singhal SS; Pikula S; Piper JT; Srivastava SK; Torman RT; Bandorowicz-Pikula J; Lin JT; Singh SV; Zimniak P; Awasthi YC
    Biochemistry; 1998 Apr; 37(15):5239-48. PubMed ID: 9548755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.
    Howard EM; Roepe PD
    Biochemistry; 2003 Apr; 42(12):3544-55. PubMed ID: 12653559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FITC binding site and p-nitrophenyl phosphatase activity of the Kdp-ATPase of Escherichia coli.
    Bramkamp M; Gassel M; Altendorf K
    Biochemistry; 2004 Apr; 43(15):4559-67. PubMed ID: 15078102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na,K-ATPase reconstituted in liposomes: effects of lipid composition on hydrolytic activity and enzyme orientation.
    de Lima Santos H; Lopes ML; Maggio B; Ciancaglini P
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):239-48. PubMed ID: 15748819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in K+-limited growth rate associated with expression of the N-terminal fragment of one subunit (KdpA) of the multisubunit Kdp transporter in Escherichia coli.
    Sardesai AA; Gowrishankar J
    J Bacteriol; 2001 Jun; 183(11):3515-20. PubMed ID: 11344160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cs(+) induces the kdp operon of Escherichia coli by lowering the intracellular K(+) concentration.
    Jung K; Krabusch M; Altendorf K
    J Bacteriol; 2001 Jun; 183(12):3800-3. PubMed ID: 11371546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP-Dependent colchicine transport by human erythrocyte glutathione conjugate transporter.
    Awasthi S; Singhal SS; Pandya U; Gopal S; Zimniak P; Singh SV; Awasthi YC
    Toxicol Appl Pharmacol; 1999 Mar; 155(3):215-26. PubMed ID: 10079207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kdp-like system in Salmonella typhimurium LT-2.
    Garcia-Cuellar C; Cienfuegos L; Bautista R; Castillo-Rivera L; Alvarez-Jacobs J; Guerrero AL; de la Garza M
    Rev Latinoam Microbiol; 1995; 37(3):227-36. PubMed ID: 8850341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmoregulation in Bacillus subtilis under potassium limitation: a new inducible K+-stimulated, VO4(3-)-inhibited ATPase.
    Sebestian J; Petrmichlová Z; Sebestianová S; Náprstek J; Svobodová J
    Can J Microbiol; 2001 Dec; 47(12):1116-25. PubMed ID: 11822838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Membrane ATPase of Vibrio alginolyticus. Ion transport activity and homology with F0F1-ATPase from E. coli].
    Dmitriev OIu; Dann S; Krasnosel'skaia IA; Papa S; Skulachev VP
    Biokhimiia; 1992 Oct; 57(10):1499-507. PubMed ID: 1457596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reconstitution of high-affinity galactose transport of Salmonella typhimurium in proteoliposomes: energization by lipoamide and NAD or by the membrane potential; inhibition by ATP].
    Richarme G
    C R Acad Sci III; 1987; 305(3):55-8. PubMed ID: 3113676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.