These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8672634)

  • 1. Degradation of poly(D,L-lactic acid) nanoparticles coated with albumin in model digestive fluids (USP XXII).
    Landry FB; Bazile DV; Spenlehauer G; Veillard M; Kreuter J
    Biomaterials; 1996 Apr; 17(7):715-23. PubMed ID: 8672634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroral administration of 14C-poly(D,L-lactic acid) nanoparticles coated with human serum albumin or polyvinyl alcohol to guinea pigs.
    Landry FB; Bazile DV; Spenlehauer G; Veillard M; Kreuter J
    J Drug Target; 1998; 6(4):293-307. PubMed ID: 9894697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats.
    Bazile DV; Ropert C; Huve P; Verrecchia T; Marlard M; Frydman A; Veillard M; Spenlehauer G
    Biomaterials; 1992; 13(15):1093-102. PubMed ID: 1493193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic degradation of films prepared from blends of high and low molecular weight poly(DL-lactic acid)s.
    Mauduit J; Pérouse E; Vert M
    J Biomed Mater Res; 1996 Feb; 30(2):201-7. PubMed ID: 9019485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro delivery of a sparingly water soluble compound from PLA50 microparticles.
    Mallard C; Coudane J; Rault I; Vert M
    J Microencapsul; 2000; 17(1):13-28. PubMed ID: 10670937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo degradation of massive poly(alpha-hydroxy acids): validation of in vitro findings.
    Therin M; Christel P; Li S; Garreau H; Vert M
    Biomaterials; 1992; 13(9):594-600. PubMed ID: 1391406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence.
    Grizzi I; Garreau H; Li S; Vert M
    Biomaterials; 1995 Mar; 16(4):305-11. PubMed ID: 7772670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D,L-lactic acid) nanoparticles by human monocytes.
    Leroux JC; De Jaeghere F; Anner B; Doelker E; Gurny R
    Life Sci; 1995; 57(7):695-703. PubMed ID: 7637541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of polydispersed poly(L-lactic acid) to modulate lactic acid release.
    von Recum HA; Cleek RL; Eskin SG; Mikos AG
    Biomaterials; 1995 Apr; 16(6):441-7. PubMed ID: 7654870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process.
    Verrecchia T; Huve P; Bazile D; Veillard M; Spenlehauer G; Couvreur P
    J Biomed Mater Res; 1993 Aug; 27(8):1019-28. PubMed ID: 8408114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability study of nanoparticles of poly(epsilon-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide).
    Lemoine D; Francois C; Kedzierewicz F; Preat V; Hoffman M; Maincent P
    Biomaterials; 1996 Nov; 17(22):2191-7. PubMed ID: 8922605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine.
    Tang J; Slowing II; Huang Y; Trewyn BG; Hu J; Liu H; Lin VS
    J Colloid Interface Sci; 2011 Aug; 360(2):488-96. PubMed ID: 21640356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLGA nanoparticles for peroral delivery: How important is pancreatic digestion and can we control it?
    Mante A; Heider M; Zlomke C; Mäder K
    Eur J Pharm Biopharm; 2016 Nov; 108():32-40. PubMed ID: 27553262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolysis studies on oleamide in simulated gastrointestinal fluids.
    Cooper I; Lord T; Tice PA
    Food Addit Contam; 1995; 12(6):769-77. PubMed ID: 8608851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation and application of a stability-indicating HPLC method for the in vitro determination of gastric and intestinal stability of venlafaxine.
    Asafu-Adjaye EB; Faustino PJ; Tawakkul MA; Anderson LW; Yu LX; Kwon H; Volpe DA
    J Pharm Biomed Anal; 2007 Apr; 43(5):1854-9. PubMed ID: 17300896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of high molecular weight poly(L-lactide) in alkaline medium.
    Cam D; Hyon SH; Ikada Y
    Biomaterials; 1995 Jul; 16(11):833-43. PubMed ID: 8527598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low molecular weight PLA: a suitable polymer for pulmonary administered microparticles?
    Wichert B; Rohdewald P
    J Microencapsul; 1993; 10(2):195-207. PubMed ID: 8392542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of polymerization conditions on the hydrolytic degradation of poly(DL-lactide) polymerized in the presence of stannous octoate or zinc-metal.
    Schwach G; Coudane J; Engel R; Vert M
    Biomaterials; 2002 Feb; 23(4):993-1002. PubMed ID: 11791933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer polyelectrolyte coating of low molecular weight poly(lactic acid) nanoparticles.
    Hirsjärvi S; Peltonen L; Hirvonen J
    Colloids Surf B Biointerfaces; 2006 Apr; 49(1):93-9. PubMed ID: 16616460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled release of newer quinolones from biodegradable systems based on poly(lactic acid).
    Andreopoulos AG
    J Biomater Appl; 1995 Oct; 10(2):163-70. PubMed ID: 8618209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.