These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8672655)
1. Vector expansion techniques for the inverse problem of electrocardiography: application to a realistic heart-torso geometry. Throne RD; Olson LG; Windle JR Biomed Sci Instrum; 1996; 32():101-6. PubMed ID: 8672655 [TBL] [Abstract][Full Text] [Related]
2. Generalized eigensystem techniques for the inverse problem of electrocardiography applied to a realistic heart-torso geometry. Throne RD; Olson LG; Hrabik TJ; Windle JR IEEE Trans Biomed Eng; 1997 Jun; 44(6):447-54. PubMed ID: 9151477 [TBL] [Abstract][Full Text] [Related]
3. Higher order regularization techniques for inverse electrocardiography. Throne RD; Olson LG Biomed Sci Instrum; 1997; 34():257-62. PubMed ID: 9603049 [TBL] [Abstract][Full Text] [Related]
4. The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography. Throne RD; Olson LG IEEE Trans Biomed Eng; 1995 Dec; 42(12):1192-200. PubMed ID: 8550061 [TBL] [Abstract][Full Text] [Related]
5. A new method for regularization parameter determination in the inverse problem of electrocardiography. Johnston PR; Gulrajani RM IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781 [TBL] [Abstract][Full Text] [Related]
6. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter. Berrier KL; Sorensen DC; Khoury DS IEEE Trans Biomed Eng; 2004 Mar; 51(3):507-15. PubMed ID: 15000381 [TBL] [Abstract][Full Text] [Related]
7. The inverse problem in electrocardiography: solutions in terms of epicardial potentials. Rudy Y; Messinger-Rapport BJ Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971 [TBL] [Abstract][Full Text] [Related]
8. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. Jiang M; Xia L; Shou G; Tang M Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454 [TBL] [Abstract][Full Text] [Related]
9. A comparison of two methods for choosing the regularization parameter for the inverse problem of electrocardiography. Lowther DA; Throne RD; Olson LG; Windle JR Biomed Sci Instrum; 2002; 38():257-61. PubMed ID: 12085612 [TBL] [Abstract][Full Text] [Related]
10. Truncated total least squares: a new regularization method for the solution of ECG inverse problems. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323 [TBL] [Abstract][Full Text] [Related]
11. Estimation of heart-surface potentials using regularized multipole sources. Beetner DG; Arthur RM IEEE Trans Biomed Eng; 2004 Aug; 51(8):1366-73. PubMed ID: 15311821 [TBL] [Abstract][Full Text] [Related]
12. Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping. Velipasaoglu EO; Sun H; Zhang F; Berrier KL; Khoury DS IEEE Trans Biomed Eng; 2000 Mar; 47(3):327-37. PubMed ID: 10743774 [TBL] [Abstract][Full Text] [Related]
14. The Laplacian inverse problem of electrocardiography: an eccentric spheres study. Johnston PR IEEE Trans Biomed Eng; 1997 Jul; 44(7):539-48. PubMed ID: 9210813 [TBL] [Abstract][Full Text] [Related]
15. Regional regularization of the electrocardiographic inverse problem: a model study using spherical geometry. Oster HS; Rudy Y IEEE Trans Biomed Eng; 1997 Feb; 44(2):188-99. PubMed ID: 9214798 [TBL] [Abstract][Full Text] [Related]
16. Two hybrid regularization frameworks for solving the electrocardiography inverse problem. Jiang M; Xia L; Shou G; Liu F; Crozier S Phys Med Biol; 2008 Sep; 53(18):5151-64. PubMed ID: 18723934 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014 [TBL] [Abstract][Full Text] [Related]
18. A spline Laplacian ECG estimator in a realistic geometry volume conductor. He B; Li G; Lian J IEEE Trans Biomed Eng; 2002 Feb; 49(2):110-7. PubMed ID: 12066878 [TBL] [Abstract][Full Text] [Related]
19. The effects of noise and errors in heart size on numerical techniques for the inverse problem of electrocardiography. Throne RD; Olson LG Biomed Sci Instrum; 1995; 31():71-6. PubMed ID: 7654987 [TBL] [Abstract][Full Text] [Related]
20. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]