These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 8672666)

  • 1. Noninvasive aortic pressure and flow measurement.
    Etemad ME; James JM; Ewert DL
    Biomed Sci Instrum; 1996; 32():175-81. PubMed ID: 8672666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic transesophageal measurement of hemodynamic parameters in humans.
    Wells MK; Histand MB; Reeves JT; Sodal IE; Adamson HP
    ISA Trans; 1979; 18(1):57-61. PubMed ID: 457368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of non-invasive techniques of measuring aortic pressure through the use of ultrasound.
    Meyers MD; Offerdahl C; Ewert D
    Biomed Sci Instrum; 1996; 32():169-74. PubMed ID: 8672665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction.
    Andropoulos DB; Stayer SA; McKenzie ED; Fraser CD
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):491-9. PubMed ID: 12658190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital signal processing of ultrasonic signals for blood flow measurement.
    Smith DR; Christmann HA; Weaver BL; Betten WR; Nazarian RA
    Biomed Sci Instrum; 1989; 25():101-5. PubMed ID: 2663094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of aortic pulse pressure and pressure wave velocity MRI measurement in young adults.
    Laffon E; Marthan R; Montaudon M; Latrabe V; Laurent F; Ducassou D
    J Magn Reson Imaging; 2005 Jan; 21(1):53-8. PubMed ID: 15611948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement.
    Weber T; Ammer M; Rammer M; Adji A; O'Rourke MF; Wassertheurer S; Rosenkranz S; Eber B
    J Hypertens; 2009 Aug; 27(8):1624-30. PubMed ID: 19531964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new flow model for Doppler ultrasound study of prosthetic heart valves.
    Durand LG; Garcia D; Sakr F; Sava H; Cimon R; Pibarot P; Fenster A; Dumesnil JG
    J Heart Valve Dis; 1999 Jan; 8(1):85-95. PubMed ID: 10096489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new detection method of ultrasonic flowmeter beam incident angle.
    Yonezawa Y; Mikuniya A; Caldwell WM; Dalton JM
    Biomed Sci Instrum; 1994; 30():219-24. PubMed ID: 7948640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trancutaneous determination of aortic blood-flow velocities in man.
    Huntsman LL; Gams E; Johnson CC; Fairbanks E
    Am Heart J; 1975 May; 89(5):605-12. PubMed ID: 123407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive measurement of blood velocity in the major thoracic vessels.
    Light LH; Cross G; Hansen PL
    Proc R Soc Med; 1974 Feb; 67(2):142-4. PubMed ID: 4821229
    [No Abstract]   [Full Text] [Related]  

  • 15. Radial blood velocity in the canine aortic arch.
    Wells MK; McMullen RF; Histand MB; Miller CW
    Biomed Sci Instrum; 1980 Apr 21-22; 16():75-9. PubMed ID: 6447519
    [No Abstract]   [Full Text] [Related]  

  • 16. [Arteriosclerosis due to blood flow? (Studies on blood flow in wall-proximal aortic arch vessels using the pulsated ultrasound-Doppler technic].
    Sandmann W; Peronneau P; Gisbertz KH; Ulrich B; Bournat JP; Xhaard M
    Vasa; 1977; 6(4):321-7. PubMed ID: 930286
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of an experimental stenosis in the porcine descending thoracic aorta.
    Tsatsaris A; Iliopoulos D; Baldoukas A; Triantafyllou D; Berketis N; Kavantzas N
    Artif Organs; 2004 Nov; 28(11):987-92. PubMed ID: 15504114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of aortic arch geometry on flow dynamics using a simplified approach with magnetic resonance velocity mapping.
    Fogel MA; Weinberg PM; Haselgrove J
    Congenit Heart Dis; 2006 Nov; 1(6):300-8. PubMed ID: 18377498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nontraumatic aortic blood flow sensing by use of an ultrasonic esophageal probe.
    Daigle RE; Miller CW; Histand MB; McLeod FD; Hokanson DE
    J Appl Physiol; 1975 Jun; 38(6):1153-60. PubMed ID: 1141132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood pressure estimation in the human fetal descending aorta.
    Struijk PC; Mathews VJ; Loupas T; Stewart PA; Clark EB; Steegers EA; Wladimiroff JW
    Ultrasound Obstet Gynecol; 2008 Oct; 32(5):673-81. PubMed ID: 18816497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.