BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8672668)

  • 21. Cross-clamping of the descending aorta. Hemodynamic and neurohumoral effects.
    Symbas PN; Pfaender LM; Drucker MH; Lester JL; Gravanis MB; Zacharopoulos L
    J Thorac Cardiovasc Surg; 1983 Feb; 85(2):300-5. PubMed ID: 6130189
    [No Abstract]   [Full Text] [Related]  

  • 22. Model inferences on baroreceptor & sinus wall responses.
    Stinnett HO; Hennes ML
    Biomed Sci Instrum; 1991; 27():105-12. PubMed ID: 2065143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparison of central pulse pressure estimated from pulse wave propagation velocity and carotid pulse pressure measured by applantation tonometry].
    Chemaly E; London G; Benetos A; Darné B; Asmar R
    Arch Mal Coeur Vaiss; 2002; 95(7-8):637-40. PubMed ID: 12365071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in vitro study of cryopreserved and fresh human arteries: a comparison with ePTFE prostheses and human arteries studied non-invasively in vivo.
    Armentano RL; Santana DB; Cabrera Fischer EI; Graf S; Cámpos HP; Germán YZ; Carmen Saldías MD; Alvarez I
    Cryobiology; 2006 Feb; 52(1):17-26. PubMed ID: 16274686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical and biotribological correlation of induced wear on bovine femoral condyles.
    Shields KJ; Owen JR; Wayne JS
    J Biomech Eng; 2009 Jun; 131(6):061005. PubMed ID: 19449959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of DC electrical current on the rodent artery.
    Fox JL; Yasargil MG
    Surg Neurol; 1974 Jan; 2(1):13-6. PubMed ID: 4810447
    [No Abstract]   [Full Text] [Related]  

  • 27. [Studies of the Ph. Broemser's balance theory].
    Päuser H; Kenner T
    Z Kreislaufforsch; 1968 Nov; 57(11):1060-73. PubMed ID: 5710011
    [No Abstract]   [Full Text] [Related]  

  • 28. Functional properties of fresh and cryopreserved carotid and femoral arteries, and of venous and synthetic grafts: comparison with arteries from normotensive and hypertensive patients.
    Santana DB; Armentano RL; Zócalo Y; Pérez Cámpos H; Cabrera FE; Graf S; Saldías M; Silva W; Alvarez I
    Cell Tissue Bank; 2007; 8(1):43-57. PubMed ID: 16826454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the metabolic syndrome on aortic stiffness in never treated hypertensive patients.
    Mulè G; Cottone S; Mongiovì R; Cusimano P; Mezzatesta G; Seddio G; Volpe V; Nardi E; Andronico G; Piazza G; Cerasola G
    Nutr Metab Cardiovasc Dis; 2006 Jan; 16(1):54-9. PubMed ID: 16399492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Associations between viscoelastic properties of large arteries and their extracellular matrix composition in abdominal aortic aneurysms in humans].
    Boutouyrie P; Glaser C; Moryusef A; Bézie Y; Fabiani JN; Laurent S; Lacolley P
    Therapie; 1999; 54(1):85-91. PubMed ID: 10216430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo viscoelastic behavior in the human aorta.
    Imura T; Yamamoto K; Satoh T; Kanamori K; Mikami T; Yasuda H
    Circ Res; 1990 May; 66(5):1413-9. PubMed ID: 2185904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Middle cerebral artery structure and distensibility during developing and established phases of hypertension in the spontaneously hypertensive rat.
    Izzard AS; Horton S; Heerkens EH; Shaw L; Heagerty AM
    J Hypertens; 2006 May; 24(5):875-80. PubMed ID: 16612249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractional-order viscoelasticity in one-dimensional blood flow models.
    Perdikaris P; Karniadakis GE
    Ann Biomed Eng; 2014 May; 42(5):1012-23. PubMed ID: 24414838
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscoelastic characteristics of in vitro vital and devitalized rat aorta and human arterial prostheses.
    Antonova ML; Antonov PS; Marinov GR; Vlaskovska MV; Kasakov LN
    Ann Biomed Eng; 2008 Jun; 36(6):947-57. PubMed ID: 18330704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear viscoelastic behaviour of canine arterial walls.
    Sato M; Ohshima N
    Med Biol Eng Comput; 1985 Nov; 23(6):565-71. PubMed ID: 4079485
    [No Abstract]   [Full Text] [Related]  

  • 37. Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data.
    Bertaglia G; Navas-Montilla A; Valiani A; Monge García MI; Murillo J; Caleffi V
    J Biomech; 2020 Feb; 100():109595. PubMed ID: 31911051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regional arterial stress-strain distributions referenced to the zero-stress state in the rat.
    Zhao J; Day J; Yuan ZF; Gregersen H
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H622-9. PubMed ID: 11788411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hylan gel composition for percutaneous embolization.
    Larsen NE; Leshchiner EA; Parent EG; Hendrikson-Aho J; Balazs EA; Hilal SK
    J Biomed Mater Res; 1991 Jun; 25(6):699-710. PubMed ID: 1874755
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The non-linearities of arterial blood flow.
    Bodley WE
    Phys Med Biol; 1971 Oct; 16(4):663-72. PubMed ID: 5153702
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.