BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8672874)

  • 1. Epigenetic carcinogens: evaluation and risk assessment.
    Williams GM; Whysner J
    Exp Toxicol Pathol; 1996 Feb; 48(2-3):189-95. PubMed ID: 8672874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic considerations in risk assessment for epigenetic tumor-promoting carcinogens.
    Williams GM; Whysner J
    Prog Clin Biol Res; 1995; 391():369-83. PubMed ID: 8532729
    [No Abstract]   [Full Text] [Related]  

  • 3. Risk assessment of d-limonene: an example of male rat-specific renal tumorigens.
    Hard GC; Whysner J
    Crit Rev Toxicol; 1994; 24(3):231-54. PubMed ID: 7945892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormesis and dose-response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens.
    Fukushima S; Kinoshita A; Puatanachokchai R; Kushida M; Wanibuchi H; Morimura K
    Carcinogenesis; 2005 Nov; 26(11):1835-45. PubMed ID: 15975961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview of genotoxic carcinogens and non-genotoxic carcinogens.
    Hayashi Y
    Exp Toxicol Pathol; 1992 Dec; 44(8):465-71. PubMed ID: 1493365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for establishing mode of action of chemical carcinogens as a guide for approaches to risk assessments.
    Butterworth BE; Conolly RB; Morgan KT
    Cancer Lett; 1995 Jun; 93(1):129-46. PubMed ID: 7600540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity.
    Kirkland D; Aardema M; Henderson L; Müller L
    Mutat Res; 2005 Jul; 584(1-2):1-256. PubMed ID: 15979392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive approach for integration of toxicity and cancer risk assessments.
    Butterworth BE; Bogdanffy MS
    Regul Toxicol Pharmacol; 1999 Feb; 29(1):23-36. PubMed ID: 10051416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloroform mode of action: implications for cancer risk assessment.
    Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA
    Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing uncertainty in risk assessment by using specific knowledge to replace default options.
    McClellan RO
    Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines.
    Doull J; Cattley R; Elcombe C; Lake BG; Swenberg J; Wilkinson C; Williams G; van Gemert M
    Regul Toxicol Pharmacol; 1999 Jun; 29(3):327-57. PubMed ID: 10388618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo Comet assay on isolated kidney cells to distinguish genotoxic carcinogens from epigenetic carcinogens or cytotoxic compounds.
    Nesslany F; Zennouche N; Simar-Meintières S; Talahari I; Nkili-Mboui EN; Marzin D
    Mutat Res; 2007 Jun; 630(1-2):28-41. PubMed ID: 17507283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode-of-action framework for evaluating the relevance of rodent forestomach tumors in cancer risk assessment.
    Proctor DM; Gatto NM; Hong SJ; Allamneni KP
    Toxicol Sci; 2007 Aug; 98(2):313-26. PubMed ID: 17426108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guidelines for the evaluation of chemicals for carcinogenicity. Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment.
    Rep Health Soc Subj (Lond); 1991; 42():1-80. PubMed ID: 1763238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiological and experimental applications to occupational cancer prevention.
    Vainio H; Hemminki K
    J UOEH; 1989 Mar; 11 Suppl():323-45. PubMed ID: 2664947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Butylated hydroxyanisole mechanistic data and risk assessment: conditional species-specific cytotoxicity, enhanced cell proliferation, and tumor promotion.
    Whysner J; Williams GM
    Pharmacol Ther; 1996; 71(1-2):137-51. PubMed ID: 8910953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.