These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 8674532)
1. Two bacteriorhodopsin M intermediates differing in accesibility of the Schiff base for azide. Radionov AN; Kaulen AD FEBS Lett; 1996 Jun; 387(2-3):122-6. PubMed ID: 8674532 [TBL] [Abstract][Full Text] [Related]
2. Complicated character of the M decay pH dependence in the D96N mutant is due to the two pathways of the M conversion. Radionov AN; Kalaidzidis IV; Kaulen AD FEBS Lett; 1996 Dec; 399(3):251-4. PubMed ID: 8985156 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of the M1-->M2 (M(closed) --> M(open)) transition in the D96N mutant photocycle and its relation to the corresponding transition in wild-type bacteriorhodopsin. Radionov AN; Kaulen AD FEBS Lett; 1997 Jun; 409(2):137-40. PubMed ID: 9202133 [TBL] [Abstract][Full Text] [Related]
4. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Otto H; Marti T; Holz M; Mogi T; Lindau M; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9228-32. PubMed ID: 2556706 [TBL] [Abstract][Full Text] [Related]
5. Determination of the transiently lowered pKa of the retinal Schiff base during the photocycle of bacteriorhodopsin. Brown LS; Lanyi JK Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1731-4. PubMed ID: 8643698 [TBL] [Abstract][Full Text] [Related]
6. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719 [TBL] [Abstract][Full Text] [Related]
7. The complex extracellular domain regulates the deprotonation and reprotonation of the retinal Schiff base during the bacteriorhodopsin photocycle. Brown LS; Váró G; Hatanaka M; Sasaki J; Kandori H; Maeda A; Friedman N; Sheves M; Nedleman R; Lanyi JK Biochemistry; 1995 Oct; 34(39):12903-11. PubMed ID: 7548047 [TBL] [Abstract][Full Text] [Related]
8. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin. Drachev LA; Kaulen AD; Komrakov AYu Biochem Mol Biol Int; 1993 Jul; 30(3):461-9. PubMed ID: 8401304 [TBL] [Abstract][Full Text] [Related]
10. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947 [TBL] [Abstract][Full Text] [Related]
11. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Luecke H Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596 [TBL] [Abstract][Full Text] [Related]
12. Local-access model for proton transfer in bacteriorhodopsin. Brown LS; Dioumaev AK; Needleman R; Lanyi JK Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720 [TBL] [Abstract][Full Text] [Related]
13. Two forms of N intermediate (N(open) and N(closed)) in the bacteriorhodopsin photocycle. Radionov AN; Kaulen AD FEBS Lett; 1999 May; 451(2):147-51. PubMed ID: 10371155 [TBL] [Abstract][Full Text] [Related]
14. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85. Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419 [TBL] [Abstract][Full Text] [Related]
15. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin. Steinberg G; Sheves M; Bressler S; Ottolenghi M Biochemistry; 1994 Oct; 33(41):12439-50. PubMed ID: 7918466 [TBL] [Abstract][Full Text] [Related]
16. Two progressive substrates of the M-intermediate can be identified in glucose-embedded, wild-type bacteriorhodopsin. Vonck J; Han BG; Burkard F; Perkins GA; Glaeser RM Biophys J; 1994 Sep; 67(3):1173-8. PubMed ID: 7811930 [TBL] [Abstract][Full Text] [Related]
17. The role of water in the extracellular half channel of bacteriorhodopsin. Ganea C; Gergely C; Ludmann K; Váró G Biophys J; 1997 Nov; 73(5):2718-25. PubMed ID: 9370465 [TBL] [Abstract][Full Text] [Related]
18. Water is required for proton transfer from aspartate-96 to the bacteriorhodopsin Schiff base. Cao Y; Váró G; Chang M; Ni BF; Needleman R; Lanyi JK Biochemistry; 1991 Nov; 30(45):10972-9. PubMed ID: 1657155 [TBL] [Abstract][Full Text] [Related]
19. [Study of intermediate N using mutant forms of bacteriorhodopsin at Asp-96]. Danshina SV; Drachev LA; Kaulen AD; Korana KhG; Marti T; Mogi T; Skulachev VI Biokhimiia; 1992 Oct; 57(10):1574-85. PubMed ID: 1333821 [TBL] [Abstract][Full Text] [Related]
20. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]