These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Photoinactivation of trypanothione reductase and glutathione reductase by Al-phthalocyanine tetrasulfonate and hematoporphyrin. Kliukiené R; Maroziené A; Cénas N; Becker K; Blanchard JS Biochem Biophys Res Commun; 1996 Jan; 218(2):629-32. PubMed ID: 8561807 [TBL] [Abstract][Full Text] [Related]
3. [Photosensitized inactivation of HeLa tumor cells by phthalocyanines]. Karu TI; Piatibrat LV; Kalenko GS Radiobiologiia; 1989; 29(3):353-8. PubMed ID: 2527378 [TBL] [Abstract][Full Text] [Related]
4. Photohemolysis of human erythrocytes induced by aluminum phthalocyanine tetrasulfonate. Ben-Hur E; Rosenthal I Cancer Lett; 1986 Mar; 30(3):321-7. PubMed ID: 3697950 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of phthalocyanine-sensitized photohemolysis of human erythrocytes by quercetin. Ben-Hur E; Rosenthal I; Granot Y Photochem Photobiol; 1993 Jun; 57(6):984-8. PubMed ID: 8367538 [TBL] [Abstract][Full Text] [Related]
6. Chloroaluminum sulfonated phthalocyanine versus dihematoporphyrin ether: early vascular events in the rat window chamber. Stern SJ; Flock S; Small S; Thomsen S; Jacques S Laryngoscope; 1991 Nov; 101(11):1219-25. PubMed ID: 1834899 [TBL] [Abstract][Full Text] [Related]
7. Action spectra for hematoporphyrin derivative and Photofrin II with respect to sensitization of human cells in vitro to photoinactivation. Moan J; Sommer S Photochem Photobiol; 1984 Nov; 40(5):631-4. PubMed ID: 6240066 [No Abstract] [Full Text] [Related]
8. Importance of type I and type II mechanisms in the photodynamic inactivation of viruses in blood with aluminum phthalocyanine derivatives. Rywkin S; Lenny L; Goldstein J; Geacintov NE; Margolis-Nunno H; Horowitz B Photochem Photobiol; 1992 Oct; 56(4):463-9. PubMed ID: 1333614 [TBL] [Abstract][Full Text] [Related]
9. Involvement of singlet oxygen in chloroaluminum phthalocyanine tetrasulfonate-mediated photoenhancement of lipid peroxidation in rat epidermal microsomes. Agarwal R; Athar M; Urban SA; Bickers DR; Mukhtar H Cancer Lett; 1991 Feb; 56(2):125-9. PubMed ID: 1998941 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the involvement of singlet oxygen in the photodestruction by chloroaluminum phthalocyanine tetrasulfonate. Agarwal R; Athar M; Bickers DR; Mukhtar H Biochem Biophys Res Commun; 1990 Nov; 173(1):34-41. PubMed ID: 2256924 [TBL] [Abstract][Full Text] [Related]
11. Isocyanate inactivation of yeast glutathione reductase & its modulation by oxidised glutathione and NADPH. Baylor KJ; Heffron JJ Biochem Soc Trans; 1996 May; 24(2):325S. PubMed ID: 8736983 [No Abstract] [Full Text] [Related]
12. Mouse skin photosensitivity with dihaematoporphyrin ether (DHE) and aluminium sulphonated phthalocyanine (AlSPc): a comparative study. Tralau CJ; Young AR; Walker NP; Vernon DI; MacRobert AJ; Brown SB; Bown SG Photochem Photobiol; 1989 Mar; 49(3):305-12. PubMed ID: 2525261 [TBL] [Abstract][Full Text] [Related]
13. Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone. Miki T; Yu L; Yu CA Biochemistry; 1991 Jan; 30(1):230-8. PubMed ID: 1846289 [TBL] [Abstract][Full Text] [Related]
14. Destruction of microsomal cytochrome P-450 by reactive oxygen species generated during photosensitization of hematoporphyrin derivative. Dixit R; Mukhtar H; Bickers DR Photochem Photobiol; 1983 Feb; 37(2):173-6. PubMed ID: 6221346 [No Abstract] [Full Text] [Related]
15. Cytotoxic and mutagenic effects of the photodynamic action of chloroaluminum phthalocyanine and visible light in L5178Y cells. Evans HH; Rerko RM; Mencl J; Clay ME; Antunez AR; Oleinick NL Photochem Photobiol; 1989 Jan; 49(1):43-7. PubMed ID: 2717667 [No Abstract] [Full Text] [Related]
16. Inhibition of phthalocyanine-sensitized photohemolysis of human erythrocytes by polyphenolic antioxidants: description of quantitative structure-activity relationships. Maroziene A; Kliukiene R; Sarlauskas J; Cenas N Cancer Lett; 2000 Aug; 157(1):39-44. PubMed ID: 10893440 [TBL] [Abstract][Full Text] [Related]
17. The activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in erythrocytes of rats with experimental neoplastic disease. Batko J; Warchoł T; Karoń H Acta Biochim Pol; 1996; 43(2):403-5. PubMed ID: 8862187 [TBL] [Abstract][Full Text] [Related]
18. The reaction mechanism of glutathione reductase from human erythrocytes. Staal GE; Veeger C Biochim Biophys Acta; 1969 Jul; 185(1):49-62. PubMed ID: 4389573 [No Abstract] [Full Text] [Related]
19. Contractile properties of isolated vascular smooth muscle after photoradiation. Freas W; Hart JL; Golightly D; McClure H; Muldoon SM Am J Physiol; 1989 Mar; 256(3 Pt 2):H655-64. PubMed ID: 2522280 [TBL] [Abstract][Full Text] [Related]
20. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats. Das M; Dixit R; Mukhtar H; Bickers DR Cancer Res; 1985 Feb; 45(2):608-15. PubMed ID: 2981610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]