These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8674773)

  • 41. Solubilizing buried domains of proteins: a self-assembling interface domain from glutathione reductase.
    Leistler B; Perham RN
    Biochemistry; 1994 Mar; 33(10):2773-81. PubMed ID: 8130189
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The relation of glutathione reductase and diaphorase activity of glutathione reductase from Saccharomyces cerevisiae].
    Chenas NK; Rakauskene GA; Kulis IuIu
    Biokhimiia; 1989 Jul; 54(7):1090-7. PubMed ID: 2679896
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of dinitrophenyl modification on oxidation-reduction of glutathione reductase from yeast.
    Maeda-Yorita K; Aki K
    J Biochem; 1985 Jun; 97(6):1795-801. PubMed ID: 4030749
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione.
    Holmgren A
    Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2275-9. PubMed ID: 7783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disulfide reduction in rat liver. I. Evidence for the presence of nonspecific nucleotide-dependent disulfide reductase and GSH-disulfide transhydrogenase activities in the high-speed supernatant fraction.
    Tietze F
    Arch Biochem Biophys; 1970 May; 138(1):177-88. PubMed ID: 4392815
    [No Abstract]   [Full Text] [Related]  

  • 46. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of active site tyrosine residues in catalysis by human glutathione reductase.
    Krauth-Siegel RL; Arscott LD; Schönleben-Janas A; Schirmer RH; Williams CH
    Biochemistry; 1998 Oct; 37(40):13968-77. PubMed ID: 9760231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of glutathione reductase activity in microgram samples of tissue, quantitative histologic distribution of the enzyme in the rat adrenal and effect of adrenocorticotropin.
    Schor NA; Glick D
    J Histochem Cytochem; 1968 Mar; 16(3):185-90. PubMed ID: 4385099
    [No Abstract]   [Full Text] [Related]  

  • 49. Regulation of reductive processes by glutathione.
    Reed DJ
    Biochem Pharmacol; 1986 Jan; 35(1):7-13. PubMed ID: 3940529
    [No Abstract]   [Full Text] [Related]  

  • 50. Compared recognition of di- and trisulfide substrates by glutathione and trypanothione reductases.
    Moutiez M; Aumercier M; Parmentier B; Tartar A; Sergheraert C
    Biochim Biophys Acta; 1995 Oct; 1245(2):161-6. PubMed ID: 7492572
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mouse-liver glutathione reductase. Purification, kinetics, and regulation.
    López-Barea J; Lee CY
    Eur J Biochem; 1979 Aug; 98(2):487-99. PubMed ID: 39757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Potential active-site base of thioredoxin reductase from Escherichia coli: examination of histidine245 and aspartate139 by site-directed mutagenesis.
    Mulrooney SB; Williams CH
    Biochemistry; 1994 Mar; 33(11):3148-54. PubMed ID: 8136348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Flavoprotein disulphide oxidoreductases: protein engineering of glutathione reductase from Escherichia coli.
    Perham RN; Berry A; Scrutton NS
    Biochem Soc Trans; 1988 Apr; 16(2):84-7. PubMed ID: 3286318
    [No Abstract]   [Full Text] [Related]  

  • 55. [Oxidation in glutathione and NADP system and GSSG liberation in extracellular spaces using hydroperoxide in the hemoglobin-free perfused rat liver].
    Sies H; Gerstenecker C; Menzel H; Flohé L
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1570. PubMed ID: 4405475
    [No Abstract]   [Full Text] [Related]  

  • 56. Role of Arg100 and Arg264 from Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer.
    Martínez-Júlvez M; Hermoso J; Hurley JK; Mayoral T; Sanz-Aparicio J; Tollin G; Gómez-Moreno C; Medina M
    Biochemistry; 1998 Dec; 37(51):17680-91. PubMed ID: 9922134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutathionylspermidine metabolism in Escherichia coli.
    Smith K; Borges A; Ariyanayagam MR; Fairlamb AH
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):465-9. PubMed ID: 8526857
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox modulation of tau and microtubule-associated protein-2 by the glutathione/glutaredoxin reductase system.
    Landino LM; Robinson SH; Skreslet TE; Cabral DM
    Biochem Biophys Res Commun; 2004 Oct; 323(1):112-7. PubMed ID: 15351709
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism and structure of thioredoxin reductase from Escherichia coli.
    Williams CH
    FASEB J; 1995 Oct; 9(13):1267-76. PubMed ID: 7557016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of 2,4,6-trinitrobenzenesulfonate on mercuric reductase, glutathione reductase and lipoamide dehydrogenase.
    Carlberg I; Sahlman L; Mannervik B
    FEBS Lett; 1985 Jan; 180(1):102-6. PubMed ID: 3917936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.