These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8674773)

  • 61. Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99.
    Deonarain MP; Berry A; Scrutton NS; Perham RN
    Biochemistry; 1989 Dec; 28(25):9602-7. PubMed ID: 2558727
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of truncation and mutation of the carboxyl-terminal region of the beta subunit on membrane assembly and activity of the pyridine nucleotide transhydrogenase of Escherichia coli.
    Bragg PD; Hou C
    Biochim Biophys Acta; 1998 Jul; 1365(3):464-72. PubMed ID: 9711299
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Histochemical and biochemical study of the cat cerebellum. I. Utilization of NADH and NADPH].
    Toledano A; Martinez R
    Ann Histochim; 1970; 15(2):141-55. PubMed ID: 4394847
    [No Abstract]   [Full Text] [Related]  

  • 64. Enzymatic catalysis of the reversible sulfitolysis of glutathione disulfide and the biological reduction of thiosulfate esters.
    Mannervik B; Persson G; Eriksson S
    Arch Biochem Biophys; 1974 Jul; 163(1):283-9. PubMed ID: 4152871
    [No Abstract]   [Full Text] [Related]  

  • 65. CoAS-Sglutathione and GSSG reductases from rat liver. Two disulfide oxidoreductase activities in one protein entity.
    Ondarza RN; Escamilla E; Gutiérrez J; De la Chica G
    Biochim Biophys Acta; 1974 Mar; 341(1):162-71. PubMed ID: 4151341
    [No Abstract]   [Full Text] [Related]  

  • 66. Essential lysine residue in glutathione reductase: chemical modification by pyridoxal 5'-phosphate.
    Pandey A; Katiyar SS
    Biochem Mol Biol Int; 1995 Jun; 36(2):347-54. PubMed ID: 7663438
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Yeast glutathione reductase. Steady-state kinetic studies of its transhydrogenase activity.
    Moroff G; Ochs RS; Brandt KG
    Arch Biochem Biophys; 1976 Mar; 173(1):42-9. PubMed ID: 4035
    [No Abstract]   [Full Text] [Related]  

  • 68. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase.
    Bradley M; Bücheler US; Walsh CT
    Biochemistry; 1991 Jun; 30(25):6124-7. PubMed ID: 2059620
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Glutathione reductase-dependent metabolism of cysteine-S-sulfate by Penicillium chrysogenum.
    Woodin TS; Segel IH
    Biochim Biophys Acta; 1968 Aug; 167(1):78-88. PubMed ID: 4386799
    [No Abstract]   [Full Text] [Related]  

  • 70. Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system.
    Landino LM; Moynihan KL; Todd JV; Kennett KL
    Biochem Biophys Res Commun; 2004 Feb; 314(2):555-60. PubMed ID: 14733943
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Glutathione reductase and glutathione-insulin-transhydrogenase and their participation in the oxydation-reduction transformation of glutathione].
    Weinbergová O
    Cesk Fysiol; 1970 May; 18(5):381-96. PubMed ID: 4913247
    [No Abstract]   [Full Text] [Related]  

  • 72. Recognition site of yeast glutathione reductase for 2'-phosphate of NADP+.
    Tsai CS
    Biochem Biophys Res Commun; 1984 Oct; 124(2):572-7. PubMed ID: 6388577
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A role for glutamine 183 in the folate oxidative half-reaction of methylenetetrahydrofolate reductase from Escherichia coli.
    Zuo C; Jolly AL; Nikolova AP; Satzer DI; Cao S; Sanchez JS; Ballou DP; Trimmer EE
    Arch Biochem Biophys; 2018 Mar; 642():63-74. PubMed ID: 29407039
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiod-influenced responses to ozone using Arabidopsis knockout mutants.
    Dghim AA; Mhamdi A; Vaultier MN; Hasenfratz-Sauder MP; Le Thiec D; Dizengremel P; Noctor G; Jolivet Y
    Plant Cell Environ; 2013 Nov; 36(11):1981-91. PubMed ID: 23527794
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Di- -glutamylcystine as a substrate for glutathione reductase.
    Smith JE
    Biochim Biophys Acta; 1971 Jul; 242(1):36-8. PubMed ID: 4399290
    [No Abstract]   [Full Text] [Related]  

  • 76. The NADPH: sulfite reductase of Escherichia coli is a paraquat reductase.
    Gaudu P; Fontecave M
    Eur J Biochem; 1994 Dec; 226(2):459-63. PubMed ID: 8001563
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Properties and subunit structure of the B component of Pseudomonas putida tryptophan synthetase.
    Maurer R; Crawford IP
    Arch Biochem Biophys; 1971 May; 144(1):193-203. PubMed ID: 5000700
    [No Abstract]   [Full Text] [Related]  

  • 78. Nonlinear regression methods in design of experiments and mathematical modelling. Applications to the analysis of the steady-state kinetics of glutathione reductase.
    Mannervik B
    Biosystems; 1975 Jul; 7(1):101-19. PubMed ID: 239774
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli.
    Holmgren A
    J Biol Chem; 1979 May; 254(9):3664-71. PubMed ID: 372193
    [No Abstract]   [Full Text] [Related]  

  • 80. The reduction step in diaminopimelic acid biosynthesis.
    Farkas W; Gilvarg C
    J Biol Chem; 1965 Dec; 240(12):4717-22. PubMed ID: 4378965
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.