BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 8675411)

  • 41. Spatial extent of pigment epithelial detachments in age-related macular degeneration.
    Kunze C; Elsner AE; Beausencourt E; Moraes L; Hartnett ME; Trempe CL
    Ophthalmology; 1999 Sep; 106(9):1830-40. PubMed ID: 10485559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of mydriasis and different field strategies on digital image screening of diabetic eye disease.
    Murgatroyd H; Ellingford A; Cox A; Binnie M; Ellis JD; MacEwen CJ; Leese GP
    Br J Ophthalmol; 2004 Jul; 88(7):920-4. PubMed ID: 15205238
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diabetic retinopathy screening using digital non-mydriatic fundus photography and automated image analysis.
    Hansen AB; Hartvig NV; Jensen MS; Borch-Johnsen K; Lund-Andersen H; Larsen M
    Acta Ophthalmol Scand; 2004 Dec; 82(6):666-72. PubMed ID: 15606461
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative analysis of multi-spectral fundus images.
    Styles IB; Calcagni A; Claridge E; Orihuela-Espina F; Gibson JM
    Med Image Anal; 2006 Aug; 10(4):578-97. PubMed ID: 16861030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional reconstruction of blood vessels extracted from retinal fundus images.
    Martinez-Perez ME; Espinosa-Romero A
    Opt Express; 2012 May; 20(10):11451-65. PubMed ID: 22565765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated assessment of diabetic retinal image quality based on clarity and field definition.
    Fleming AD; Philip S; Goatman KA; Olson JA; Sharp PF
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1120-5. PubMed ID: 16505050
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform.
    Zana F; Klein JC
    IEEE Trans Med Imaging; 1999 May; 18(5):419-28. PubMed ID: 10416803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of modified portable digital camera for screening of diabetic retinopathy.
    Chalam KV; Brar VS; Keshavamurthy R
    Ophthalmic Res; 2009; 42(1):60-2. PubMed ID: 19478543
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wide-angle noncontact and small-angle contact cameras.
    Pomerantzeff O
    Invest Ophthalmol Vis Sci; 1980 Aug; 19(8):973-9. PubMed ID: 7409991
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluating the eye's rotational stability during standard photography: effect on determining the axial orientation of toric intraocular lenses.
    Viestenz A; Seitz B; Langenbucher A
    J Cataract Refract Surg; 2005 Mar; 31(3):557-61. PubMed ID: 15811745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dark-room methods of enhancing details in diabetic fundus photographs: a preliminary study.
    Shakespeare AR
    Ophthalmic Physiol Opt; 1987; 7(4):387-92. PubMed ID: 3454913
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High Dynamic Range Image Processing for Retinal Color Fundus Photography.
    Critser DB; Troyer J; Whitmore SS; Mansoor M; Stone EM; Russell JF; Han IC
    Ophthalmic Surg Lasers Imaging Retina; 2024 May; 55(5):263-269. PubMed ID: 38408222
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Fast 3D surface rendering for CT or MR image on a personal computer].
    Zhuge B; Feng HQ; Zhou HQ; Zhang SJ; Wu D
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):296-9. PubMed ID: 12425338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differentiation of degenerative retinoschisis from retinal detachment using optical coherence tomography.
    Ip M; Garza-Karren C; Duker JS; Reichel E; Swartz JC; Amirikia A; Puliafito CA
    Ophthalmology; 1999 Mar; 106(3):600-5. PubMed ID: 10080221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CycleGAN-based deep learning technique for artifact reduction in fundus photography.
    Yoo TK; Choi JY; Kim HK
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [A robust method for automated retinal vascular images mosaic based on phase correlation method and mathematical morphology].
    Xu L; Zhang H; Yu Y; Zheng X; Yu F; Jiang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Sep; 15(3):286-90. PubMed ID: 12553255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction.
    Miri MS; Mahloojifar A
    IEEE Trans Biomed Eng; 2011 May; 58(5):1183-92. PubMed ID: 21147592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Panretinal, high-resolution color photography of the mouse fundus.
    Paques M; Guyomard JL; Simonutti M; Roux MJ; Picaud S; Legargasson JF; Sahel JA
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2769-74. PubMed ID: 17525211
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal filter framework for automated, instantaneous detection of lesions in retinal images.
    Quellec G; Russell SR; Abramoff MD
    IEEE Trans Med Imaging; 2011 Feb; 30(2):523-33. PubMed ID: 21292586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fully automated montaging of laser scanning in vivo confocal microscopy images of the human corneal subbasal nerve plexus.
    Turuwhenua JT; Patel DV; McGhee CN
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2235-42. PubMed ID: 22427563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.