These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 867565)

  • 1. An ultrasonic detector for microgasemboli in a bloodflow line.
    Lubbers J; Van Den Berg JW
    Ultrasound Med Biol; 1977; 2(4):301-10. PubMed ID: 867565
    [No Abstract]   [Full Text] [Related]  

  • 2. Microgasemboli in a pump oxygenator during open-heart surgery.
    Lubbers J; ten Hof JP; van der Veen PH; van den Berg JW; Dorlas JC; van der Heide JN
    Arch Chir Neerl; 1974; 26(1):41-53. PubMed ID: 4842319
    [No Abstract]   [Full Text] [Related]  

  • 3. The production of microemboli by various blood oxygenators.
    Kessler J; Patterson RH
    Ann Thorac Surg; 1970 Mar; 9(3):221-8. PubMed ID: 5413746
    [No Abstract]   [Full Text] [Related]  

  • 4. Massive venous air embolism during cardiopulmonary bypass.
    Wells WJ; Stiles QR
    Ann Thorac Surg; 1981 Jan; 31(1):86-9. PubMed ID: 6970017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Automatic protection from air embolism by the use of a plastic oxygenator].
    Hehrlein F; Eisenreich FX; Wagner H
    Thoraxchir Vask Chir; 1967 Feb; 15(1):82-3. PubMed ID: 5238689
    [No Abstract]   [Full Text] [Related]  

  • 6. Bubbles in an infant oxygenator at very low flow rates.
    Fisk GC; Lawrence J; Stacey RB; Wright JS; Horton DA
    J Thorac Cardiovasc Surg; 1972 Jul; 64(1):98-102. PubMed ID: 5053966
    [No Abstract]   [Full Text] [Related]  

  • 7. Prolonged partial left heart bypass in sheep: successful use of a new type of pump.
    Temple LJ; Ritchie HE; Wright JT; Koziell J
    Thorax; 1971 Sep; 26(5):543-50. PubMed ID: 5134055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acoustic filter: an ultrasonic blood filter for the heart-lung machine.
    Schwarz KQ; Church CC; Serrino P; Meltzer RS
    J Thorac Cardiovasc Surg; 1992 Dec; 104(6):1647-53. PubMed ID: 1453729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the microparticles produced when two disposable-bag oxygenators and a disc oxygenator are used for cardiopulmonary bypass.
    Simmons E; MaGuire C; Lichti E; Helvey W; Almond C
    J Thorac Cardiovasc Surg; 1972 Apr; 63(4):613-21. PubMed ID: 5014645
    [No Abstract]   [Full Text] [Related]  

  • 10. An in vitro evaluation of an automatic clamp for use with centrifugal pumps.
    Vocelka CR; Thomas R
    J Extra Corpor Technol; 1997 Sep; 29(3):154-7. PubMed ID: 10174265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrapore hemofiltration during extracorporeal circulation.
    Gervin AS; McNeer JF; Wolfe WG; Puckett CL; Silver D
    J Thorac Cardiovasc Surg; 1974 Feb; 67(2):237-42. PubMed ID: 4810997
    [No Abstract]   [Full Text] [Related]  

  • 12. [Problems of air embolism during open heart surgery and its prevention].
    Eguchi S
    Kyobu Geka; 1965 Jul; 18(8):539-45. PubMed ID: 5891727
    [No Abstract]   [Full Text] [Related]  

  • 13. [Pneumatic control for the heart-lung machine].
    Weissbach G
    Z Exp Chir; 1972; 5(2):81-6. PubMed ID: 4680974
    [No Abstract]   [Full Text] [Related]  

  • 14. Ultrasonic identification of sources of gaseous microemboli during open heart surgery.
    Gallagher EG; Pearson DT
    Thorax; 1973 May; 28(3):295-305. PubMed ID: 4724497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial and total circulatory support in the rat using a small heart-lung machine [proceedings].
    Proctor E
    J Physiol; 1978 Aug; 281():8P-10P. PubMed ID: 702408
    [No Abstract]   [Full Text] [Related]  

  • 16. Can an oxygenator design potentially contribute to air embolism in cardiopulmonary bypass? A novel method for the determination of the air removal capabilities of neonatal membrane oxygenators.
    De Somer F; Dierickx P; Dujardin D; Verdonck P; Van Nooten G
    Perfusion; 1998 May; 13(3):157-63. PubMed ID: 9638712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effectiveness of various heart-lung machines in the elimination of microbubbles from the circulation.
    Selman MW; McAlpine WA; Ratan RS
    J Thorac Cardiovasc Surg; 1967 May; 53(5):613-7. PubMed ID: 6025804
    [No Abstract]   [Full Text] [Related]  

  • 18. Potential impact of oxygenators with venous air trap on air embolism in veno-arterial Extracorporeal Life Support.
    Born F; Khaladj N; Pichlmaier M; Schramm R; Hagl C; Guenther SP
    Technol Health Care; 2017; 25(1):111-121. PubMed ID: 27497463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prevention of gas microemboli during cardiac surgery. Numerical control of cardiac cavity purging by an ultrasonic detector].
    Mikaeloff P; Van Haecke P; Girard C; Tartulier M; Devolfe C; Guillaud C; Lakestani F; Roche M; Guillerm R; Masurel G
    Arch Mal Coeur Vaiss; 1984 Mar; 77(3):314-23. PubMed ID: 6424617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparative evaluation of membrane, bubble and foam-film oxygenators in artificial circulation during heart surgery].
    Shumakov VI; PisarevskiÄ­ AA; Karasev AB; Naumov SP; DoletskiÄ­ AS
    Vestn Khir Im I I Grek; 1978 Jun; 120(6):15-21. PubMed ID: 675979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.