BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8675777)

  • 1. Effect of variance of interaction effects of sire and herd on selection for milk and fat yield.
    Dimov G; Keown JF; Van Vleck LD; Norman HD
    J Dairy Sci; 1996 Jan; 79(1):140-4. PubMed ID: 8675777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variance of interaction effects of sire and herd for yield traits of Holsteins in California, New York, and Pennsylvania with an animal model.
    Dimov G; Albuquerque LG; Keown JF; Van Vleck LD; Norman HD
    J Dairy Sci; 1995 Apr; 78(4):939-46. PubMed ID: 7790587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within-herd heritability estimated with daughter-parent regression for yield and somatic cell score.
    Dechow CD; Norman HD
    J Dairy Sci; 2007 Jan; 90(1):482-92. PubMed ID: 17183117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variances of direct genetic effects, maternal genetic effects, and cytoplasmic inheritance effects for milk yield, fat yield, and fat percentage.
    Albuquerque LG; Keown JF; Van Vleck LD
    J Dairy Sci; 1998 Feb; 81(2):544-9. PubMed ID: 9532509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of international dairy sire evaluations from meta-analysis of national estimated breeding values and direct analysis of individual animal performance records.
    Maltecca C; Bagnato A; Weigel KA
    J Dairy Sci; 2004 Aug; 87(8):2599-605. PubMed ID: 15328284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variance components for test-day milk, fat, and protein yield, and somatic cell score for analyzing management information.
    Caccamo M; Veerkamp RF; de Jong G; Pool MH; Petriglieri R; Licitra G
    J Dairy Sci; 2008 Aug; 91(8):3268-76. PubMed ID: 18650304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of herd life in Canadian dairy cattle on a lactation basis using a Weibull proportional hazards model.
    Sewalem A; Kistemaker GJ; Ducrocq V; Van Doormaal BJ
    J Dairy Sci; 2005 Jan; 88(1):368-75. PubMed ID: 15591401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variance caused by cytoplasmic line and sire by herd interaction effects for milk yield considering estimation bias.
    Rorato PR; Keown JF; Van Vleck LD
    J Dairy Sci; 1999 Jul; 82(7):1574-80. PubMed ID: 10416173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotype by environment interaction for production traits while accounting for heteroscedasticity.
    Fahey AG; Schutz MM; Lofgren DL; Schinckel AP; Stewart TS
    J Dairy Sci; 2007 Aug; 90(8):3889-99. PubMed ID: 17639000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of factors that cause genotype by environment interaction between herds of Holstein cattle in seventeen countries.
    Zwald NR; Weigel KA; Fikse WF; Rekaya R
    J Dairy Sci; 2003 Mar; 86(3):1009-18. PubMed ID: 12703638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body condition scores and dairy form evaluations as indicators of days open in US Holsteins.
    Dechow CD; Rogers GW; Klei L; Lawlor TJ; VanRaden PM
    J Dairy Sci; 2004 Oct; 87(10):3534-41. PubMed ID: 15377633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heritability of changes in genetic evaluations of dairy bulls from first to later records of daughters.
    Abdallah JM; McDaniel BT
    J Dairy Sci; 2002 Apr; 85(4):951-7. PubMed ID: 12018441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covariance functions across herd production levels for test day records on milk, fat, and protein yields.
    Veerkamp RF; Goddard ME
    J Dairy Sci; 1998 Jun; 81(6):1690-701. PubMed ID: 9684176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. International genetic evaluation of dairy sires using a multiple-trait model with individual animal performance records.
    Weigel KA; Rekaya R; Zwald NR; Fikse WF
    J Dairy Sci; 2001 Dec; 84(12):2789-95. PubMed ID: 11814036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype x environment interaction for grazing versus confinement. I. Production traits.
    Kearney JF; Schutz MM; Boettcher PJ; Weigel KA
    J Dairy Sci; 2004 Feb; 87(2):501-9. PubMed ID: 14762093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic change in milk, fat, days open, and body weight after calving based on three methods of sire selection.
    Abdallah JM; McDaniel BT
    J Dairy Sci; 2000 Jun; 83(6):1359-63. PubMed ID: 10877402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of milk production traits in early lactation using a reaction norm model with unknown covariates.
    Shariati MM; Su G; Madsen P; Sorensen D
    J Dairy Sci; 2007 Dec; 90(12):5759-66. PubMed ID: 18024770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of Holstein cattle populations in Brazil and the United States.
    Costa CN; Blake RW; Pollak EJ; Oltenacu PA; Quaas RL; Searle SR
    J Dairy Sci; 2000 Dec; 83(12):2963-74. PubMed ID: 11132868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotype by environment interaction for yield and somatic cell score with alternative environmental definitions.
    Raffrenato E; Blake RW; Oltenacu PA; Carvalheira J; Licitra G
    J Dairy Sci; 2003 Jul; 86(7):2470-9. PubMed ID: 12906065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of longevity breeding values for US Holstein sires using survival analysis methodology.
    Caraviello DZ; Weigel KA; Gianola D
    J Dairy Sci; 2004 Oct; 87(10):3518-25. PubMed ID: 15377631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.