These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8675851)

  • 1. Cepstral representation of speech motivated by time-frequency masking: an application to speech recognition.
    Aikawa K; Singer H; Kawahara H; Tohkura Y
    J Acoust Soc Am; 1996 Jul; 100(1):603-14. PubMed ID: 8675851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of spectral smearing on phoneme and word recognition.
    Boothroyd A; Mulhearn B; Gong J; Ostroff J
    J Acoust Soc Am; 1996 Sep; 100(3):1807-18. PubMed ID: 8817914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception.
    Schädler MR; Warzybok A; Ewert SD; Kollmeier B
    J Acoust Soc Am; 2016 May; 139(5):2708. PubMed ID: 27250164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human phoneme recognition depending on speech-intrinsic variability.
    Meyer BT; Jürgens T; Wesker T; Brand T; Kollmeier B
    J Acoust Soc Am; 2010 Nov; 128(5):3126-41. PubMed ID: 21110608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Masking patterns for synthetic vowels in simultaneous and forward masking.
    Moore BC; Glasberg BR
    J Acoust Soc Am; 1983 Mar; 73(3):906-17. PubMed ID: 6221041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of auditory perception as front end for automatic speech recognition.
    Tchorz J; Kollmeier B
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2040-50. PubMed ID: 10530027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
    Meyer BT; Brand T; Kollmeier B
    J Acoust Soc Am; 2011 Jan; 129(1):388-403. PubMed ID: 21303019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors governing speech reception benefits of adaptive linear filtering for listeners with sensorineural hearing loss.
    Rankovic CM
    J Acoust Soc Am; 1998 Feb; 103(2):1043-57. PubMed ID: 9479758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognizing the message and the messenger: biomimetic spectral analysis for robust speech and speaker recognition.
    Nemala SK; Patil K; Elhilali M
    Int J Speech Technol; 2013; 16(3):313-322. PubMed ID: 26412979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Robust Speaker Identification System Using the Responses from a Model of the Auditory Periphery.
    Islam MA; Jassim WA; Cheok NS; Zilany MS
    PLoS One; 2016; 11(7):e0158520. PubMed ID: 27392046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectro-temporal modulation energy based mask for robust speaker identification.
    Chi TS; Lin TH; Hsu CC
    J Acoust Soc Am; 2012 May; 131(5):EL368-74. PubMed ID: 22559454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bio-inspired feature extraction for robust speech recognition.
    Zouhir Y; Ouni K
    Springerplus; 2014; 3():651. PubMed ID: 25485194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual linear predictive (PLP) analysis of speech.
    Hermansky H
    J Acoust Soc Am; 1990 Apr; 87(4):1738-52. PubMed ID: 2341679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formant measurement in children's speech based on spectral filtering.
    Story BH; Bunton K
    Speech Commun; 2015; 76():93-111. PubMed ID: 26855461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional modulation of the early cortical representation of speech signals in informational or energetic masking.
    Zhang C; Lu L; Wu X; Li L
    Brain Lang; 2014 Aug; 135():85-95. PubMed ID: 24992572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2004 Sep; 116(3):1774-80. PubMed ID: 15478444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.