BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8676262)

  • 1. Curved beam model of the proximal femur for estimating stress using dual-energy X-ray absorptiometry derived structural geometry.
    Mourtada FA; Beck TJ; Hauser DL; Ruff CB; Bao G
    J Orthop Res; 1996 May; 14(3):483-92. PubMed ID: 8676262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental testing of a DEXA-derived curved beam model of the proximal femur.
    Beck TJ; Mourtada FA; Ruff CB; Scott WW; Kao G
    J Orthop Res; 1998 May; 16(3):394-8. PubMed ID: 9671936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age trends in femur stresses from a simulated fall on the hip among men and women: evidence of homeostatic adaptation underlying the decline in hip BMD.
    Beck TJ; Looker AC; Mourtada F; Daphtary MM; Ruff CB
    J Bone Miner Res; 2006 Sep; 21(9):1425-32. PubMed ID: 16939401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of proximal femoral stiffness and areal bone mineral density to changes in bone geometry and density.
    Pisharody S; Phillips R; Langton CM
    Proc Inst Mech Eng H; 2008 Apr; 222(3):367-75. PubMed ID: 18491705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femur geometry and body composition influence femoral neck stresses: A combined fall simulation and beam modelling approach.
    Pretty SP; Mourtzakis M; Laing AC
    J Biomech; 2022 Aug; 141():111192. PubMed ID: 35764013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural failure mechanisms in the human proximal femur for sideways fall loading.
    Nawathe S; Akhlaghpour H; Bouxsein ML; Keaveny TM
    J Bone Miner Res; 2014 Feb; 29(2):507-15. PubMed ID: 23832419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual-energy X-ray absorptiometry.
    Sievänen H; Uusi-Rasi K; Heinonen A; Oja P; Vuori I
    Osteoporos Int; 1999; 10(4):295-302. PubMed ID: 10692978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 3D finite element analysis derived stiffness and BMD to determine the failure load of the excised proximal femur.
    Langton CM; Pisharody S; Keyak JH
    Med Eng Phys; 2009 Jul; 31(6):668-72. PubMed ID: 19230742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fracture prediction for the proximal femur using finite element models: Part I--Linear analysis.
    Lotz JC; Cheal EJ; Hayes WC
    J Biomech Eng; 1991 Nov; 113(4):353-60. PubMed ID: 1762430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curved Beam Computed Tomography based Structural Rigidity Analysis of Bones with Simulated Lytic Defect: A Comparative Study with Finite Element Analysis.
    Oftadeh R; Karimi Z; Villa-Camacho J; Tanck E; Verdonschot N; Goebel R; Snyder BD; Hashemi HN; Vaziri A; Nazarian A
    Sci Rep; 2016 Sep; 6():32397. PubMed ID: 27585495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approach of predicting fracture load in the human proximal femur using non-invasive QCT imaging technique.
    Lee T; Pereira BP; Chung YS; Oh HJ; Choi JB; Lim D; Shin JH
    Ann Biomed Eng; 2009 May; 37(5):966-75. PubMed ID: 19288197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry of proximal femur in the prediction of hip fracture in osteoporotic women.
    Gnudi S; Ripamonti C; Gualtieri G; Malavolta N
    Br J Radiol; 1999 Aug; 72(860):729-33. PubMed ID: 10624337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femoral bone density measurements by single energy computed tomography related to hip fractures.
    Alho A; Høiseth A; Husby T; Ekeland A
    Ann Chir Gynaecol; 1988; 77(5-6):208-11. PubMed ID: 3254683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation of Proximal Femur to Mechanical Loading in Young Adults: Standard Vs Localized Regions Evaluated by DXA.
    Baptista F; Lopes E; Matute-Llorente Á; Teles J; Zymbal V
    J Clin Densitom; 2020; 23(1):73-81. PubMed ID: 30274880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of load-induced bone structural remodelling using stress-limit criterion.
    Marzban A; Nayeb-Hashemi H; Vaziri A
    Comput Methods Biomech Biomed Engin; 2015; 18(3):259-68. PubMed ID: 23697838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur.
    Lochmüller EM; Miller P; Bürklein D; Wehr U; Rambeck W; Eckstein F
    Osteoporos Int; 2000; 11(4):361-7. PubMed ID: 10928227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical activity induced adaptation can increase proximal femur strength under loading from a fall onto the greater trochanter.
    Fuchs RK; Carballido-Gamio J; Keyak JH; Kersh ME; Warden SJ
    Bone; 2021 Nov; 152():116090. PubMed ID: 34175500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of impact direction on the structural capacity of the proximal femur during falls.
    Ford CM; Keaveny TM; Hayes WC
    J Bone Miner Res; 1996 Mar; 11(3):377-83. PubMed ID: 8852948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk of fracture in elderly patients: a new predictive index based on bone mineral density and finite element analysis.
    Testi D; Viceconti M; Baruffaldi F; Cappello A
    Comput Methods Programs Biomed; 1999 Jul; 60(1):23-33. PubMed ID: 10430460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.