These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 8676283)
1. Process optimization for continuous ethanol fermentation by alginate-immobilized cells of Saccharomyces cerevisiae HAU-1. Yadav BS; Rani U; Dhamija SS; Nigam P; Singh D J Basic Microbiol; 1996; 36(3):205-10. PubMed ID: 8676283 [TBL] [Abstract][Full Text] [Related]
2. Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1. Sheoran A; Yadav BS; Nigam P; Singh D J Basic Microbiol; 1998; 38(2):123-8. PubMed ID: 9637012 [TBL] [Abstract][Full Text] [Related]
3. Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate-maize stem ground tissue matrix. Razmovski R; Vučurović V Enzyme Microb Technol; 2011 Apr; 48(4-5):378-85. PubMed ID: 22112953 [TBL] [Abstract][Full Text] [Related]
4. Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier. Zheng C; Sun X; Li L; Guan N Bioresour Technol; 2012 Jul; 115():208-14. PubMed ID: 22154581 [TBL] [Abstract][Full Text] [Related]
5. High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae. Eiadpum A; Limtong S; Phisalaphong M J Biosci Bioeng; 2012 Sep; 114(3):325-9. PubMed ID: 22608995 [TBL] [Abstract][Full Text] [Related]
6. Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae. Taherzadeh MJ; Millati R; Niklasson C Appl Biochem Biotechnol; 2001 Jul; 95(1):45-57. PubMed ID: 11665806 [TBL] [Abstract][Full Text] [Related]
7. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. Farid MA; El-Enshasy HA; Noor El-Deen AM J Basic Microbiol; 2002; 42(3):162-71. PubMed ID: 12111743 [TBL] [Abstract][Full Text] [Related]
9. Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae. Xu W; Liang L; Song Z; Zhu M Biotechnol Appl Biochem; 2014; 61(3):289-96. PubMed ID: 24164318 [TBL] [Abstract][Full Text] [Related]
10. Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a fed-batch process: optimization by response surface methodology. Carvalho JC; Vitolo M; Sato S; Aquarone E Appl Biochem Biotechnol; 2003 Sep; 110(3):151-64. PubMed ID: 14512635 [TBL] [Abstract][Full Text] [Related]
11. Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Lee KH; Choi IS; Kim YG; Yang DJ; Bae HJ Bioresour Technol; 2011 Sep; 102(17):8191-8. PubMed ID: 21742486 [TBL] [Abstract][Full Text] [Related]
12. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
13. Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Ercan Y; Irfan T; Mustafa K Bioresour Technol; 2013 May; 135():365-71. PubMed ID: 23010212 [TBL] [Abstract][Full Text] [Related]
14. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Liu CZ; Wang F; Ou-Yang F Bioresour Technol; 2009 Jan; 100(2):878-82. PubMed ID: 18760598 [TBL] [Abstract][Full Text] [Related]
15. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. Tang YQ; An MZ; Zhong YL; Shigeru M; Wu XL; Kida K J Biosci Bioeng; 2010 Jan; 109(1):41-6. PubMed ID: 20129080 [TBL] [Abstract][Full Text] [Related]
16. The use of chitosan to increase the stability of calcium alginate beads with entrapped yeast cells. Li X Biotechnol Appl Biochem; 1996 Jun; 23(3):269-72. PubMed ID: 8679112 [TBL] [Abstract][Full Text] [Related]
17. Proteomic analysis of calcium alginate-immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions. Pham TK; Wright PC J Proteome Res; 2008 Feb; 7(2):515-25. PubMed ID: 18171021 [TBL] [Abstract][Full Text] [Related]
18. Improvement of beta-galactosidase immobilization and its application to ethanol fermentation of lactose. Lewandowska M; Bednarski W; Kulesza S Commun Agric Appl Biol Sci; 2003; 68(2 Pt B):493-6. PubMed ID: 24757794 [TBL] [Abstract][Full Text] [Related]
19. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Silbir S; Dagbagli S; Yegin S; Baysal T; Goksungur Y Carbohydr Polym; 2014 Jan; 99():454-61. PubMed ID: 24274530 [TBL] [Abstract][Full Text] [Related]
20. Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. Liang L; Zhang YP; Zhang L; Zhu MJ; Liang SZ; Huang YN J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1605-13. PubMed ID: 18685877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]