These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 8676862)
1. Co-induction of DNA relaxation and synthesis of DnaK and GroEL proteins in Escherichia coli by expression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor. Kaneko T; Mizushima T; Ohtsuka Y; Kurokawa K; Kataoka K; Miki T; Sekimizu K Mol Gen Genet; 1996 Mar; 250(5):593-600. PubMed ID: 8676862 [TBL] [Abstract][Full Text] [Related]
2. Relaxation of supercoiled DNA associated with induction of heat shock proteins in Escherichia coli. Mizushima T; Natori S; Sekimizu K Mol Gen Genet; 1993 Apr; 238(1-2):1-5. PubMed ID: 8097554 [TBL] [Abstract][Full Text] [Related]
3. Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. Antagonistic actions of LetA (CcdA) and LetD (CcdB) proteins. Maki S; Takiguchi S; Miki T; Horiuchi T J Biol Chem; 1992 Jun; 267(17):12244-51. PubMed ID: 1318314 [TBL] [Abstract][Full Text] [Related]
4. Temperature shift-up leads to simultaneous and continuous plasmid DNA relaxation and induction of DnaK and GroEL proteins in anaerobically growing Escherichia coli cells. Mizushima T; Ohtsuka Y; Miki T; Sekimizu K FEMS Microbiol Lett; 1994 Sep; 121(3):333-6. PubMed ID: 7926689 [TBL] [Abstract][Full Text] [Related]
5. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Nagai H; Yuzawa H; Kanemori M; Yura T Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941 [TBL] [Abstract][Full Text] [Related]
6. Induction of DnaK and GroEL heat shock proteins by fluoroquinolones in Escherichia coli. Mizushima T; Matsuo M; Sekimizu K Antimicrob Agents Chemother; 1997 Jan; 41(1):193-5. PubMed ID: 8980780 [TBL] [Abstract][Full Text] [Related]
7. Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli. Kanemori M; Mori H; Yura T J Bacteriol; 1994 Jul; 176(14):4235-42. PubMed ID: 7912695 [TBL] [Abstract][Full Text] [Related]
8. In vivo effect of DNA relaxation on the transcription of gene rpoH in Escherichia coli. López-Sánchez F; Ramírez-Santos J; Gómez-Eichelmann MC Biochim Biophys Acta; 1997 Jul; 1353(1):79-83. PubMed ID: 9256067 [TBL] [Abstract][Full Text] [Related]
9. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. Miki T; Park JA; Nagao K; Murayama N; Horiuchi T J Mol Biol; 1992 May; 225(1):39-52. PubMed ID: 1316444 [TBL] [Abstract][Full Text] [Related]
10. Increase in synthesis and stability of sigma 32 on treatment with inhibitors of DNA gyrase in Escherichia coli. Mizushima T; Ohtsuka Y; Mori H; Miki T; Sekimizu K Mol Gen Genet; 1996 Dec; 253(3):297-302. PubMed ID: 9003316 [TBL] [Abstract][Full Text] [Related]
11. Evidence for involvement of Escherichia coli genes pmbA, csrA and a previously unrecognized gene tldD, in the control of DNA gyrase by letD (ccdB) of sex factor F. Murayama N; Shimizu H; Takiguchi S; Baba Y; Amino H; Horiuchi T; Sekimizu K; Miki T J Mol Biol; 1996 Mar; 256(3):483-502. PubMed ID: 8604133 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli. Chow KC; Tung WL Biochem Biophys Res Commun; 1998 Dec; 253(2):502-5. PubMed ID: 9878565 [TBL] [Abstract][Full Text] [Related]
13. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
14. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823 [TBL] [Abstract][Full Text] [Related]
15. Partner switching mechanisms in inactivation and rejuvenation of Escherichia coli DNA gyrase by F plasmid proteins LetD (CcdB) and LetA (CcdA). Maki S; Takiguchi S; Horiuchi T; Sekimizu K; Miki T J Mol Biol; 1996 Mar; 256(3):473-82. PubMed ID: 8604132 [TBL] [Abstract][Full Text] [Related]
16. Induction of heat shock response in Vibrio cholerae. JeevanJyot ; Ghosh A Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2101-9. PubMed ID: 7496521 [TBL] [Abstract][Full Text] [Related]
17. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli. Kanemori M; Mori H; Yura T J Bacteriol; 1994 Sep; 176(18):5648-53. PubMed ID: 7916010 [TBL] [Abstract][Full Text] [Related]
18. How a mutation in the gene encoding sigma 70 suppresses the defective heat shock response caused by a mutation in the gene encoding sigma 32. Zhou YN; Gross CA J Bacteriol; 1992 Nov; 174(22):7128-37. PubMed ID: 1385385 [TBL] [Abstract][Full Text] [Related]
19. Induction by psychotropic drugs and local anesthetics of DnaK and GroEL proteins in Escherichia coli. Tanji K; Mizushima T; Natori S; Sekimizu K Biochim Biophys Acta; 1992 Jan; 1129(2):172-6. PubMed ID: 1346093 [TBL] [Abstract][Full Text] [Related]
20. Effect of the deletion of the sigma 32-dependent promoter (P1) of the Escherichia coli topoisomerase I gene on thermotolerance. Qi H; Menzel R; Tse-Dinh YC Mol Microbiol; 1996 Aug; 21(4):703-11. PubMed ID: 8878034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]