BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 8679534)

  • 1. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of the transition state of the low-molecular mass small tyrosine phosphatase 1. Comparisons with other protein phosphatases.
    Hengge AC; Zhao Y; Wu L; Zhang ZY
    Biochemistry; 1997 Jun; 36(25):7928-36. PubMed ID: 9201938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of the transition state of the protein-tyrosine phosphatase-catalyzed reaction.
    Hengge AC; Sowa GA; Wu L; Zhang ZY
    Biochemistry; 1995 Oct; 34(43):13982-7. PubMed ID: 7577995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase.
    Rigas JD; Hoff RH; Rice AE; Hengge AC; Denu JM
    Biochemistry; 2001 Apr; 40(14):4398-406. PubMed ID: 11284696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the transition-state structure of dual-specificity protein phosphatases using a physiological substrate mimic.
    Grzyska PK; Kim Y; Jackson MD; Hengge AC; Denu JM
    Biochemistry; 2004 Jul; 43(27):8807-14. PubMed ID: 15236589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: transition state structure and effect of calmodulin and Mn2+.
    Hengge AC; Martin BL
    Biochemistry; 1997 Aug; 36(33):10185-91. PubMed ID: 9254616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis.
    Denu JM; Lohse DL; Vijayalakshmi J; Saper MA; Dixon JE
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2493-8. PubMed ID: 8637902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+.
    Martin BL; Jurado LA; Hengge AC
    Biochemistry; 1999 Mar; 38(11):3386-92. PubMed ID: 10079083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase.
    Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL
    Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase.
    Denu JM; Zhou G; Guo Y; Dixon JE
    Biochemistry; 1995 Mar; 34(10):3396-403. PubMed ID: 7880835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A catalytic mechanism for the dual-specific phosphatases.
    Denu JM; Dixon JE
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5910-4. PubMed ID: 7597052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary 18O isotope effects as a tool for studying reactions of phosphate mono-, di-, and triesters.
    Cleland WW
    FASEB J; 1990 Aug; 4(11):2899-905. PubMed ID: 2199287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects on general acid catalysis from mutations of the invariant tryptophan and arginine residues in the protein tyrosine phosphatase from Yersinia.
    Hoff RH; Hengge AC; Wu L; Keng YF; Zhang ZY
    Biochemistry; 2000 Jan; 39(1):46-54. PubMed ID: 10625478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation.
    Wu L; Zhang ZY
    Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotope effects and medium effects on sulfuryl transfer reactions.
    Hoff RH; Larsen P; Hengge AC
    J Am Chem Soc; 2001 Sep; 123(38):9338-44. PubMed ID: 11562216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of the phosphoryl transfer catalyzed by Yersinia protein-tyrosine phosphatase: a computational and isotope effect study.
    Czyryca PG; Hengge AC
    Biochim Biophys Acta; 2001 Jun; 1547(2):245-53. PubMed ID: 11410280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired transition state complementarity in the hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases.
    Zhang YL; Hollfelder F; Gordon SJ; Chen L; Keng YF; Wu L; Herschlag D; Zhang ZY
    Biochemistry; 1999 Sep; 38(37):12111-23. PubMed ID: 10508416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered transition state for the reaction of an RNA model catalyzed by a dinuclear zinc(II) catalyst.
    Humphry T; Iyer S; Iranzo O; Morrow JR; Richard JP; Paneth P; Hengge AC
    J Am Chem Soc; 2008 Dec; 130(52):17858-66. PubMed ID: 19053445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.