These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
383 related articles for article (PubMed ID: 8679540)
1. Studies on the hydrolytic properties of (serine) carboxypeptidase Y. Stennicke HR; Mortensen UH; Breddam K Biochemistry; 1996 Jun; 35(22):7131-41. PubMed ID: 8679540 [TBL] [Abstract][Full Text] [Related]
2. A conserved glutamic acid bridge in serine carboxypeptidases, belonging to the alpha/beta hydrolase fold, acts as a pH-dependent protein-stabilizing element. Mortensen UH; Breddam K Protein Sci; 1994 May; 3(5):838-42. PubMed ID: 7914789 [TBL] [Abstract][Full Text] [Related]
3. Substrates with charged P1 residues are efficiently hydrolyzed by serine carboxypeptidases when S3-P1 interactions are facilitated. Olesen K; Breddam K Biochemistry; 1997 Oct; 36(40):12235-41. PubMed ID: 9315861 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J; Auld DS Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337 [TBL] [Abstract][Full Text] [Related]
5. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
6. Comparative modeling of substrate binding in the S1' subsite of serine carboxypeptidases from yeast, wheat, and human. Elsliger MA; Pshezhetsky AV; Vinogradova MV; Svedas VK; Potier M Biochemistry; 1996 Nov; 35(47):14899-909. PubMed ID: 8942654 [TBL] [Abstract][Full Text] [Related]
7. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
8. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates. Hayashi R; Bai Y; Hata T J Biochem; 1975 Jan; 77(1?):69-79. PubMed ID: 237004 [TBL] [Abstract][Full Text] [Related]
9. [Characterization of S1' subsite specificity of Thermoactinomyces vulgaris carboxypeptidase T by site-directed mutagenesis]. Trachuk LA; Bushueva AM; Shevelev AB; Novgorodova SA; Akparov VKh; Chestukhina GG Vopr Med Khim; 2002; 48(6):577-85. PubMed ID: 12698557 [TBL] [Abstract][Full Text] [Related]
10. Effects of pH on carboxypeptidase-Y-catalyzed hydrolysis and aminolysis reactions. Christensen U Eur J Biochem; 1994 Feb; 220(1):149-53. PubMed ID: 8119282 [TBL] [Abstract][Full Text] [Related]
11. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features. Liljeblad A; Kallio P; Vainio M; Niemi J; Kanerva LT Org Biomol Chem; 2010 Feb; 8(4):886-95. PubMed ID: 20135048 [TBL] [Abstract][Full Text] [Related]
12. Site-directed mutagenesis on (serine) carboxypeptidase Y. A hydrogen bond network stabilizes the transition state by interaction with the C-terminal carboxylate group of the substrate. Mortensen UH; Remington SJ; Breddam K Biochemistry; 1994 Jan; 33(2):508-17. PubMed ID: 7904479 [TBL] [Abstract][Full Text] [Related]
13. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883 [TBL] [Abstract][Full Text] [Related]
15. Substrate recognition mechanism of carboxypeptidase Y. Nakase H; Murata S; Ueno H; Hayashi R Biosci Biotechnol Biochem; 2001 Nov; 65(11):2465-71. PubMed ID: 11791720 [TBL] [Abstract][Full Text] [Related]
16. Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family. Szeltner Z; Renner V; Polgár L Protein Sci; 2000 Feb; 9(2):353-60. PubMed ID: 10716187 [TBL] [Abstract][Full Text] [Related]
17. [Enzyme intermediates with the C-terminal products of substrate hydrolysis by carboxypeptidase A and chymotrypsin. Use of the free energy linearity principle]. Kozlov LV Biokhimiia; 1980 Aug; 45(8):1442-7. PubMed ID: 7236796 [TBL] [Abstract][Full Text] [Related]
18. Active site of epoxide hydrolases revisited: a noncanonical residue in potato StEH1 promotes both formation and breakdown of the alkylenzyme intermediate. Thomaeus A; Carlsson J; Aqvist J; Widersten M Biochemistry; 2007 Mar; 46(9):2466-79. PubMed ID: 17284015 [TBL] [Abstract][Full Text] [Related]
19. On the catalytic role of the conserved active site residue His466 of choline oxidase. Ghanem M; Gadda G Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Pohjanjoki P; Lahti R; Goldman A; Cooperman BS Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]