These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
908 related articles for article (PubMed ID: 8679547)
1. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
2. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Dec; 35(51):16770-6. PubMed ID: 8988014 [TBL] [Abstract][Full Text] [Related]
3. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Ryle MJ; Seefeldt LC Biochemistry; 1996 Apr; 35(15):4766-75. PubMed ID: 8664266 [TBL] [Abstract][Full Text] [Related]
4. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
5. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN; Parker VD; Seefeldt LC Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061 [TBL] [Abstract][Full Text] [Related]
6. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Ryle MJ; Lanzilotta WN; Seefeldt LC Biochemistry; 1996 Jul; 35(29):9424-34. PubMed ID: 8755721 [TBL] [Abstract][Full Text] [Related]
8. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. Chan JM; Ryle MJ; Seefeldt LC J Biol Chem; 1999 Jun; 274(25):17593-8. PubMed ID: 10364195 [TBL] [Abstract][Full Text] [Related]
9. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN; Ryle MJ; Seefeldt LC Biochemistry; 1995 Aug; 34(34):10713-23. PubMed ID: 7662655 [TBL] [Abstract][Full Text] [Related]
10. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
11. Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Christiansen J; Goodwin PJ; Lanzilotta WN; Seefeldt LC; Dean DR Biochemistry; 1998 Sep; 37(36):12611-23. PubMed ID: 9730834 [TBL] [Abstract][Full Text] [Related]
12. MgATP-Bound and nucleotide-free structures of a nitrogenase protein complex between the Leu 127 Delta-Fe-protein and the MoFe-protein. Chiu H; Peters JW; Lanzilotta WN; Ryle MJ; Seefeldt LC; Howard JB; Rees DC Biochemistry; 2001 Jan; 40(3):641-50. PubMed ID: 11170380 [TBL] [Abstract][Full Text] [Related]
13. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution. Clarke TA; Maritano S; Eady RR Biochemistry; 2000 Sep; 39(37):11434-40. PubMed ID: 10985789 [TBL] [Abstract][Full Text] [Related]
14. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein. Seefeldt LC Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853 [TBL] [Abstract][Full Text] [Related]
15. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii. Duyvis MG; Wassink H; Haaker H Eur J Biochem; 1994 Nov; 225(3):881-90. PubMed ID: 7957225 [TBL] [Abstract][Full Text] [Related]
16. Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase. Lanzilotta WN; Christiansen J; Dean DR; Seefeldt LC Biochemistry; 1998 Aug; 37(32):11376-84. PubMed ID: 9698385 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Chan JM; Christiansen J; Dean DR; Seefeldt LC Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529 [TBL] [Abstract][Full Text] [Related]
18. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. Lanzilotta WN; Fisher K; Seefeldt LC J Biol Chem; 1997 Feb; 272(7):4157-65. PubMed ID: 9020128 [TBL] [Abstract][Full Text] [Related]
19. Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function. Fisher K; Lowe DJ; Tavares P; Pereira AS; Huynh BH; Edmondson D; Newton WE J Inorg Biochem; 2007 Nov; 101(11-12):1649-56. PubMed ID: 17845818 [TBL] [Abstract][Full Text] [Related]
20. Circular dichroism and x-ray spectroscopies of Azotobacter vinelandii nitrogenase iron protein. MgATP and MgADP induced protein conformational changes affecting the [4Fe-4S] cluster and characterization of a [2Fe-2S] form. Ryle MJ; Lanzilotta WN; Seefeldt LC; Scarrow RC; Jensen GM J Biol Chem; 1996 Jan; 271(3):1551-7. PubMed ID: 8576152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]