These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
722 related articles for article (PubMed ID: 8679595)
1. Spectroscopic states of the CO oxidation/CO2 reduction active site of carbon monoxide dehydrogenase and mechanistic implications. Anderson ME; Lindahl PA Biochemistry; 1996 Jun; 35(25):8371-80. PubMed ID: 8679595 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates. Seravalli J; Kumar M; Lu WP; Ragsdale SW Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167 [TBL] [Abstract][Full Text] [Related]
3. Organization of clusters and internal electron pathways in CO dehydrogenase from Clostridium thermoaceticum: relevance to the mechanism of catalysis and cyanide inhibition. Anderson ME; Lindahl PA Biochemistry; 1994 Jul; 33(29):8702-11. PubMed ID: 8038160 [TBL] [Abstract][Full Text] [Related]
4. First-Principles Calculations on Ni,Fe-Containing Carbon Monoxide Dehydrogenases Reveal Key Stereoelectronic Features for Binding and Release of CO Breglia R; Arrigoni F; Sensi M; Greco C; Fantucci P; De Gioia L; Bruschi M Inorg Chem; 2021 Jan; 60(1):387-402. PubMed ID: 33321036 [TBL] [Abstract][Full Text] [Related]
5. CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2. Russell WK; Lindahl PA Biochemistry; 1998 Jul; 37(28):10016-26. PubMed ID: 9665707 [TBL] [Abstract][Full Text] [Related]
6. Binding of carbon disulfide to the site of acetyl-CoA synthesis by the nickel-iron-sulfur protein, carbon monoxide dehydrogenase, from Clostridium thermoaceticum. Kumar M; Lu WP; Ragsdale SW Biochemistry; 1994 Aug; 33(32):9769-77. PubMed ID: 8068656 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Seravalli J; Kumar M; Lu WP; Ragsdale SW Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899 [TBL] [Abstract][Full Text] [Related]
9. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Shin W; Lindahl PA Biochemistry; 1992 Dec; 31(51):12870-5. PubMed ID: 1334436 [TBL] [Abstract][Full Text] [Related]
10. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Shin W; Stafford PR; Lindahl PA Biochemistry; 1992 Jul; 31(26):6003-11. PubMed ID: 1320927 [TBL] [Abstract][Full Text] [Related]
11. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. Lu WP; Ragsdale SW J Biol Chem; 1991 Feb; 266(6):3554-64. PubMed ID: 1995618 [TBL] [Abstract][Full Text] [Related]
12. 13C NMR characterization of an exchange reaction between CO and CO2 catalyzed by carbon monoxide dehydrogenase. Seravalli J; Ragsdale SW Biochemistry; 2008 Jul; 47(26):6770-81. PubMed ID: 18589895 [TBL] [Abstract][Full Text] [Related]
13. Carbon dioxide activation at the Ni,Fe-cluster of anaerobic carbon monoxide dehydrogenase. Jeoung JH; Dobbek H Science; 2007 Nov; 318(5855):1461-4. PubMed ID: 18048691 [TBL] [Abstract][Full Text] [Related]
14. Carbon Monoxide Dehydrogenase Reduces Cyanate to Cyanide. Ciaccafava A; Tombolelli D; Domnik L; Jeoung JH; Dobbek H; Mroginski MA; Zebger I; Hildebrandt P Angew Chem Int Ed Engl; 2017 Jun; 56(26):7398-7401. PubMed ID: 28544748 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR. Fan CL; Gorst CM; Ragsdale SW; Hoffman BM Biochemistry; 1991 Jan; 30(2):431-5. PubMed ID: 1846295 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic studies of nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: nature of the iron-sulfur clusters. Craft JL; Ludden PW; Brunold TC Biochemistry; 2002 Feb; 41(5):1681-8. PubMed ID: 11814363 [TBL] [Abstract][Full Text] [Related]
18. Nickel is required for the transfer of electrons from carbon monoxide to the iron-sulfur center(s) of carbon monoxide dehydrogenase from Rhodospirillum rubrum. Ensign SA; Bonam D; Ludden PW Biochemistry; 1989 Jun; 28(12):4968-73. PubMed ID: 2504284 [TBL] [Abstract][Full Text] [Related]
19. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO Carlson ED; Papoutsakis ET Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a proposed intermediate redox state in the CO/CO(2) active site of acetyl-CoA synthase (Carbon monoxide dehydrogenase) from Clostridium thermoaceticum. Fraser DM; Lindahl PA Biochemistry; 1999 Nov; 38(48):15706-11. PubMed ID: 10625436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]