These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 8679611)
1. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin. Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611 [TBL] [Abstract][Full Text] [Related]
2. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032 [TBL] [Abstract][Full Text] [Related]
3. A resonance Raman study of the C=C stretch modes in bovine and octopus visual pigments with isotopically labeled retinal chromophores. Huang L; Deng H; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH Photochem Photobiol; 1997 Dec; 66(6):747-54. PubMed ID: 9421961 [TBL] [Abstract][Full Text] [Related]
4. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores. Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH Photochem Photobiol; 1991 Dec; 54(6):1001-7. PubMed ID: 1775525 [TBL] [Abstract][Full Text] [Related]
5. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635 [TBL] [Abstract][Full Text] [Related]
6. Photoreactions of metarhodopsin III. Vogel R; Lüdeke S; Radu I; Siebert F; Sheves M Biochemistry; 2004 Aug; 43(31):10255-64. PubMed ID: 15287753 [TBL] [Abstract][Full Text] [Related]
7. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin. Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785 [TBL] [Abstract][Full Text] [Related]
8. Water and peptide backbone structure in the active center of bovine rhodopsin. Nagata T; Terakita A; Kandori H; Kojima D; Shichida Y; Maeda A Biochemistry; 1997 May; 36(20):6164-70. PubMed ID: 9166788 [TBL] [Abstract][Full Text] [Related]
9. Resonance Raman studies of the primary photochemical event in visual pigments. Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248 [TBL] [Abstract][Full Text] [Related]
10. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage. Eyring G; Mathies R Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349 [TBL] [Abstract][Full Text] [Related]
11. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin. Deng H; Callender RH Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083 [TBL] [Abstract][Full Text] [Related]
12. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Bagley KA; Eisenstein L; Ebrey TG; Tsuda M Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842 [TBL] [Abstract][Full Text] [Related]
14. Structure of the retinal chromophore in 7,9-dicis-rhodopsin. Loppnow GR; Miley ME; Mathies RA; Liu RS; Kandori H; Shichida Y; Fukada Y; Yoshizawa T Biochemistry; 1990 Sep; 29(38):8985-91. PubMed ID: 2271572 [TBL] [Abstract][Full Text] [Related]
15. Vibrational analysis of the all-trans retinal protonated Schiff base. Smith SO; Myers AB; Mathies RA; Pardoen JA; Winkel C; van den Berg EM; Lugtenburg J Biophys J; 1985 May; 47(5):653-64. PubMed ID: 4016185 [TBL] [Abstract][Full Text] [Related]
16. Resonance Raman studies of the HOOP modes in octopus bathorhodopsin with deuterium-labeled retinal chromophores. Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH Biochemistry; 1991 May; 30(18):4495-502. PubMed ID: 2021639 [TBL] [Abstract][Full Text] [Related]
17. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Andel F; Lagarias JC; Mathies RA Biochemistry; 1996 Dec; 35(50):15997-6008. PubMed ID: 8973170 [TBL] [Abstract][Full Text] [Related]
18. The Schiff base bond configuration in bacteriorhodopsin and in model compounds. Livnah N; Sheves M Biochemistry; 1993 Jul; 32(28):7223-8. PubMed ID: 8343511 [TBL] [Abstract][Full Text] [Related]
19. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness. Fahmy K; Zvyaga TA; Sakmar TP; Siebert F Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673 [TBL] [Abstract][Full Text] [Related]
20. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Pan D; Mathies RA Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]