These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8679630)

  • 21. Structural basis for the diversity of the mechanism of nucleotide hydrolysis by the aminoglycoside-2''-phosphotransferases.
    Smith CA; Toth M; Stewart NK; Maltz L; Vakulenko SB
    Acta Crystallogr D Struct Biol; 2019 Dec; 75(Pt 12):1129-1137. PubMed ID: 31793906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognition of aminoglycoside antibiotics by enterococcal-staphylococcal aminoglycoside 3'-phosphotransferase type IIIa: role of substrate amino groups.
    McKay GA; Roestamadji J; Mobashery S; Wright GD
    Antimicrob Agents Chemother; 1996 Nov; 40(11):2648-50. PubMed ID: 8913482
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic studies of Escherichia coli adenosine-5'-phosphosulfate kinase.
    Satishchandran C; Markham GD
    Arch Biochem Biophys; 2000 Jun; 378(2):210-5. PubMed ID: 10860538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aminoglycoside antibiotic phosphotransferases are also serine protein kinases.
    Daigle DM; McKay GA; Thompson PR; Wright GD
    Chem Biol; 1999 Jan; 6(1):11-8. PubMed ID: 9889150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ATP-linked structural change in protein kinase A precedes phosphoryl transfer under physiological magnesium concentrations.
    Shaffer J; Adams JA
    Biochemistry; 1999 Apr; 38(17):5572-81. PubMed ID: 10220345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures of antibiotic-bound complexes of aminoglycoside 2''-phosphotransferase IVa highlight the diversity in substrate binding modes among aminoglycoside kinases.
    Shi K; Houston DR; Berghuis AM
    Biochemistry; 2011 Jul; 50(28):6237-44. PubMed ID: 21678960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Half-of-sites binding of orotidine 5'-phosphate and alpha-D-5-phosphorylribose 1-diphosphate to orotate phosphoribosyltransferase from Saccharomyces cerevisiae supports a novel variant of the Theorell-Chance mechanism with alternating site catalysis.
    McClard RW; Holets EA; MacKinnon AL; Witte JF
    Biochemistry; 2006 Apr; 45(16):5330-42. PubMed ID: 16618122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATP binding enables broad antibiotic selectivity of aminoglycoside phosphotransferase(3')-IIIa: an elastic network analysis.
    Wieninger SA; Serpersu EH; Ullmann GM
    J Mol Biol; 2011 Jun; 409(3):450-65. PubMed ID: 21477597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active site labeling of the gentamicin resistance enzyme AAC(6')-APH(2") by the lipid kinase inhibitor wortmannin.
    Boehr DD; Lane WS; Wright GD
    Chem Biol; 2001 Aug; 8(8):791-800. PubMed ID: 11514228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectinomycin kinase from Legionella pneumophila. Characterization of substrate specificity and identification of catalytically important residues.
    Thompson PR; Hughes DW; Cianciotto NP; Wright GD
    J Biol Chem; 1998 Jun; 273(24):14788-95. PubMed ID: 9614079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases.
    Hon WC; McKay GA; Thompson PR; Sweet RM; Yang DS; Wright GD; Berghuis AM
    Cell; 1997 Jun; 89(6):887-95. PubMed ID: 9200607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanism of aminoglycoside antibiotic kinase APH(3')-IIIa: roles of conserved active site residues.
    Boehr DD; Thompson PR; Wright GD
    J Biol Chem; 2001 Jun; 276(26):23929-36. PubMed ID: 11279088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divalent ion effects and insights into the catalytic mechanism of protein tyrosine kinase Csk.
    Grace MR; Walsh CT; Cole PA
    Biochemistry; 1997 Feb; 36(7):1874-81. PubMed ID: 9048573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study.
    Kaplan E; Guichou JF; Chaloin L; Kunzelmann S; Leban N; Serpersu EH; Lionne C
    Biochim Biophys Acta; 2016 Apr; 1860(4):802-13. PubMed ID: 26802312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2.
    Wu H; Zheng Y; Wang ZX
    Biochemistry; 2003 Feb; 42(4):1129-39. PubMed ID: 12549935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping of the ATP-binding domain of human fructosamine 3-kinase-related protein by affinity labelling with 5'-[p-(fluorosulfonyl)benzoyl]adenosine.
    Payne LS; Brown PM; Middleditch M; Baker E; Cooper GJ; Loomes KM
    Biochem J; 2008 Dec; 416(2):281-8. PubMed ID: 18637789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding interactions in a kinase active site modulate background ATP hydrolysis.
    Wang Y; Hanrahan G; Azar FA; Mittermaier A
    Biochim Biophys Acta Proteins Proteom; 2022 Jan; 1870(1):140720. PubMed ID: 34597835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A novel plasmid-mediated aminoglycosides-modifying enzyme gene, aph (2'')-Ie, in a strain of high-level gentamicin resistant Enterococcus casseliflavus].
    Qu TT; Zhang Y; Yu YS; Chen YG; Wei ZQ; Li LJ
    Zhonghua Yi Xue Za Zhi; 2006 Mar; 86(9):596-9. PubMed ID: 16681903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR detected hydrogen-deuterium exchange reveals differential dynamics of antibiotic- and nucleotide-bound aminoglycoside phosphotransferase 3'-IIIa.
    Norris AL; Serpersu EH
    J Am Chem Soc; 2009 Jun; 131(24):8587-94. PubMed ID: 19463004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] provide insights into substrate selectivity in the APH(2'') subfamily.
    Young PG; Walanj R; Lakshmi V; Byrnes LJ; Metcalf P; Baker EN; Vakulenko SB; Smith CA
    J Bacteriol; 2009 Jul; 191(13):4133-43. PubMed ID: 19429619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.