BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8679779)

  • 1. [The role of oxygen radicals formed during function of the membrane redox chain, in damage of nuclear DNA].
    Peskin AV
    Biokhimiia; 1996 Jan; 61(1):65-72. PubMed ID: 8679779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin stimulation of hydroxyl radical production by rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide dismutase-sensitive, NAD(P)H-dependent reduction of oxygen by the membrane-bound redox chains of liver microsomes and hepatoma nuclei in the presence of adrenaline.
    Peskin AV; Zbarsky IB; Konstantinov AA
    Biochem Int; 1984 May; 8(5):733-8. PubMed ID: 6477630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5.
    Mahmutoglu I; Kappus H
    Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear DNA damage during NAD(P)H oxidation by membrane redox chains.
    Peskin AV
    Free Radic Biol Med; 1996; 20(3):313-8. PubMed ID: 8720901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of chronic ethanol consumption on NADH- and NADPH-dependent generation of reactive oxygen intermediates by isolated rat liver nuclei.
    Kukiełka E; Cederbaum AI
    Alcohol Alcohol; 1992 May; 27(3):233-9. PubMed ID: 1449558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron.
    Kukiełka E; Cederbaum AI
    Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the Comet assay to investigate the role of superoxide in glutathione-induced DNA damage.
    Thomas S; Lowe JE; Hadjivassiliou V; Knowles RG; Green IC; Green MH
    Biochem Biophys Res Commun; 1998 Feb; 243(1):241-5. PubMed ID: 9473511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei].
    Vartanian LS; Gurevich SM
    Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-induced DNA damage in freshly isolated brain cells compared with cultured astrocytes in the Comet assay.
    Cemeli E; Smith IF; Peers C; Urenjak J; Godukhin OV; Obrenovitch TP; Anderson D
    Teratog Carcinog Mutagen; 2003; Suppl 2():43-52. PubMed ID: 14691979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L.
    Achary VM; Jena S; Panda KK; Panda BB
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):300-10. PubMed ID: 18068230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells.
    Ikediobi CO; Badisa VL; Ayuk-Takem LT; Latinwo LM; West J
    Int J Mol Med; 2004 Jul; 14(1):87-92. PubMed ID: 15202021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity.
    Petrat F; Bramey T; Kirsch M; De Groot H
    Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extension of murine life span by overexpression of catalase targeted to mitochondria.
    Schriner SE; Linford NJ; Martin GM; Treuting P; Ogburn CE; Emond M; Coskun PE; Ladiges W; Wolf N; Van Remmen H; Wallace DC; Rabinovitch PS
    Science; 2005 Jun; 308(5730):1909-11. PubMed ID: 15879174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell nuclei generate DNA-nicking superoxide radicals.
    Peskin AV; Shlyahova L
    FEBS Lett; 1986 Jan; 194(2):317-21. PubMed ID: 3000831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total antioxidant capacity and nuclear DNA damage in keratinocytes after exposure to H2O2.
    Armeni T; Battino M; Stronati A; Pugnaloni A; Tomassini G; Rosi G; Biagini G; Principato G
    Biol Chem; 2001 Dec; 382(12):1697-705. PubMed ID: 11843183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage.
    Shirahata S; Kabayama S; Nakano M; Miura T; Kusumoto K; Gotoh M; Hayashi H; Otsubo K; Morisawa S; Katakura Y
    Biochem Biophys Res Commun; 1997 May; 234(1):269-74. PubMed ID: 9169001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.
    Midorikawa K; Uchida T; Okamoto Y; Toda C; Sakai Y; Ueda K; Hiraku Y; Murata M; Kawanishi S; Kojima N
    Chem Biol Interact; 2004 Dec; 150(3):271-81. PubMed ID: 15560893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.