These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8679779)
1. [The role of oxygen radicals formed during function of the membrane redox chain, in damage of nuclear DNA]. Peskin AV Biokhimiia; 1996 Jan; 61(1):65-72. PubMed ID: 8679779 [TBL] [Abstract][Full Text] [Related]
2. Ferritin stimulation of hydroxyl radical production by rat liver nuclei. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1994 Jan; 308(1):70-7. PubMed ID: 8311476 [TBL] [Abstract][Full Text] [Related]
3. Superoxide dismutase-sensitive, NAD(P)H-dependent reduction of oxygen by the membrane-bound redox chains of liver microsomes and hepatoma nuclei in the presence of adrenaline. Peskin AV; Zbarsky IB; Konstantinov AA Biochem Int; 1984 May; 8(5):733-8. PubMed ID: 6477630 [TBL] [Abstract][Full Text] [Related]
4. Redox cycling of bleomycin-Fe(III) and DNA degradation by isolated NADH-cytochrome b5 reductase: involvement of cytochrome b5. Mahmutoglu I; Kappus H Mol Pharmacol; 1988 Oct; 34(4):578-83. PubMed ID: 2459594 [TBL] [Abstract][Full Text] [Related]
5. Nuclear DNA damage during NAD(P)H oxidation by membrane redox chains. Peskin AV Free Radic Biol Med; 1996; 20(3):313-8. PubMed ID: 8720901 [TBL] [Abstract][Full Text] [Related]
6. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals. Kukiełka E; Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554 [TBL] [Abstract][Full Text] [Related]
7. The effect of chronic ethanol consumption on NADH- and NADPH-dependent generation of reactive oxygen intermediates by isolated rat liver nuclei. Kukiełka E; Cederbaum AI Alcohol Alcohol; 1992 May; 27(3):233-9. PubMed ID: 1449558 [TBL] [Abstract][Full Text] [Related]
8. NADPH- and NADH-dependent oxygen radical generation by rat liver nuclei in the presence of redox cycling agents and iron. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1990 Dec; 283(2):326-33. PubMed ID: 2275546 [TBL] [Abstract][Full Text] [Related]
9. Use of the Comet assay to investigate the role of superoxide in glutathione-induced DNA damage. Thomas S; Lowe JE; Hadjivassiliou V; Knowles RG; Green IC; Green MH Biochem Biophys Res Commun; 1998 Feb; 243(1):241-5. PubMed ID: 9473511 [TBL] [Abstract][Full Text] [Related]
10. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879 [TBL] [Abstract][Full Text] [Related]
11. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei]. Vartanian LS; Gurevich SM Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393 [TBL] [Abstract][Full Text] [Related]
12. Oxygen-induced DNA damage in freshly isolated brain cells compared with cultured astrocytes in the Comet assay. Cemeli E; Smith IF; Peers C; Urenjak J; Godukhin OV; Obrenovitch TP; Anderson D Teratog Carcinog Mutagen; 2003; Suppl 2():43-52. PubMed ID: 14691979 [TBL] [Abstract][Full Text] [Related]
13. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Achary VM; Jena S; Panda KK; Panda BB Ecotoxicol Environ Saf; 2008 Jun; 70(2):300-10. PubMed ID: 18068230 [TBL] [Abstract][Full Text] [Related]
14. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Ikediobi CO; Badisa VL; Ayuk-Takem LT; Latinwo LM; West J Int J Mol Med; 2004 Jul; 14(1):87-92. PubMed ID: 15202021 [TBL] [Abstract][Full Text] [Related]
15. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity. Petrat F; Bramey T; Kirsch M; De Groot H Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730 [TBL] [Abstract][Full Text] [Related]
16. Extension of murine life span by overexpression of catalase targeted to mitochondria. Schriner SE; Linford NJ; Martin GM; Treuting P; Ogburn CE; Emond M; Coskun PE; Ladiges W; Wolf N; Van Remmen H; Wallace DC; Rabinovitch PS Science; 2005 Jun; 308(5730):1909-11. PubMed ID: 15879174 [TBL] [Abstract][Full Text] [Related]
18. Total antioxidant capacity and nuclear DNA damage in keratinocytes after exposure to H2O2. Armeni T; Battino M; Stronati A; Pugnaloni A; Tomassini G; Rosi G; Biagini G; Principato G Biol Chem; 2001 Dec; 382(12):1697-705. PubMed ID: 11843183 [TBL] [Abstract][Full Text] [Related]
19. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Shirahata S; Kabayama S; Nakano M; Miura T; Kusumoto K; Gotoh M; Hayashi H; Otsubo K; Morisawa S; Katakura Y Biochem Biophys Res Commun; 1997 May; 234(1):269-74. PubMed ID: 9169001 [TBL] [Abstract][Full Text] [Related]
20. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage. Midorikawa K; Uchida T; Okamoto Y; Toda C; Sakai Y; Ueda K; Hiraku Y; Murata M; Kawanishi S; Kojima N Chem Biol Interact; 2004 Dec; 150(3):271-81. PubMed ID: 15560893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]