BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 8680862)

  • 1. Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis.
    Huang J; Philbert MA
    Brain Res; 1996 Mar; 711(1-2):184-92. PubMed ID: 8680862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells.
    Huang J; Philbert MA
    Brain Res; 1995 May; 680(1-2):16-22. PubMed ID: 7663973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiol depletion induces lethal cell injury in cultured cardiomyocytes.
    Dhanbhoora CM; Babson JR
    Arch Biochem Biophys; 1992 Feb; 293(1):130-9. PubMed ID: 1731629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimolecular glutathione conjugation kinetics of ethacrynic acid in rat liver: in vitro and perfusion studies.
    Tirona RG; Pang KS
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1230-41. PubMed ID: 10454499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite.
    Muyderman H; Nilsson M; Sims NR
    J Neurosci; 2004 Sep; 24(37):8019-28. PubMed ID: 15371502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid.
    Rizzardini M; Lupi M; Bernasconi S; Mangolini A; Cantoni L
    J Neurol Sci; 2003 Mar; 207(1-2):51-8. PubMed ID: 12614931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of L-buthionine sulfoximine and ethacrynic acid on glutathione levels and mitochondrial function in PC12 cells.
    Seyfried J; Soldner F; Schulz JB; Klockgether T; Kovar KA; Wüllner U
    Neurosci Lett; 1999 Apr; 264(1-3):1-4. PubMed ID: 10319999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytes.
    Muyderman H; Wadey AL; Nilsson M; Sims NR
    J Neurochem; 2007 Aug; 102(4):1369-82. PubMed ID: 17484727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of intracellular glutathione mediates zinc-induced cell death in rat primary astrocytes.
    Ryu R; Shin Y; Choi JW; Min W; Ryu H; Choi CR; Ko H
    Exp Brain Res; 2002 Mar; 143(2):257-63. PubMed ID: 11880902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytosolic and mitochondrial glutathione in microglial cells are differentially affected by oxidative/nitrosative stress.
    Roychowdhury S; Wolf G; Keilhoff G; Horn TF
    Nitric Oxide; 2003 Feb; 8(1):39-47. PubMed ID: 12586540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase.
    Xing KY; Lou MF
    Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorpromazine protection against Ca(2+)-dependent and oxidative cell injury. Limitations due to depressed mitochondrial function.
    Babson JR; Gavitt NE; Dougherty JM
    Biochem Pharmacol; 1994 Oct; 48(7):1509-17. PubMed ID: 7945452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of mitochondrial fusion by cysteine-alkylators ethacrynic acid and N-ethylmaleimide.
    Bowes TJ; Gupta RS
    J Cell Physiol; 2005 Mar; 202(3):796-804. PubMed ID: 15389563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes.
    Kaur P; Aschner M; Syversen T
    Neurotoxicology; 2006 Jul; 27(4):492-500. PubMed ID: 16513172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and glutathione conjugation of ethacrynic acid and efflux of the glutathione adduct by periportal and perivenous rat hepatocytes.
    Tirona RG; Tan E; Meier G; Pang KS
    J Pharmacol Exp Ther; 1999 Dec; 291(3):1210-9. PubMed ID: 10565844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.
    Shanker G; Syversen T; Aschner JL; Aschner M
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):11-22. PubMed ID: 15950756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethacrynic-acid-induced glutathione depletion and oxidative stress in normal and Mrp2-deficient rat liver.
    Ji B; Ito K; Sekine S; Tajima A; Horie T
    Free Radic Biol Med; 2004 Dec; 37(11):1718-29. PubMed ID: 15528031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin maintains glutathione homeostasis in kainic acid-exposed rat brain tissues.
    Floreani M; Skaper SD; Facci L; Lipartiti M; Giusti P
    FASEB J; 1997 Dec; 11(14):1309-15. PubMed ID: 9409550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of glutathione-S-transferase (GST) inhibition on lung epithelial cell injury: role of oxidative stress and metabolism.
    Fletcher ME; Boshier PR; Wakabayashi K; Keun HC; Smolenski RT; Kirkham PA; Adcock IM; Barton PJ; Takata M; Marczin N
    Am J Physiol Lung Cell Mol Physiol; 2015 Jun; 308(12):L1274-85. PubMed ID: 26078397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culture duration alters the glutathione content and sensitivity to ethacrynic acid of rat hepatocyte monolayer cultures.
    Meredith MJ
    Cell Biol Toxicol; 1986 Dec; 2(4):495-505. PubMed ID: 3267460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.