These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8681334)

  • 21. Role of high molecular weight extracellular matrix proteins in glioma cell migration.
    Mahesparan R; Tysnes BB; Edvardsen K; Haugeland HK; Cabrera IG; Lund-Johansen M; Engebraaten O; Bjerkvig R
    Neuropathol Appl Neurobiol; 1997 Apr; 23(2):102-12. PubMed ID: 9160895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers.
    Hungerford JE; Owens GK; Argraves WS; Little CD
    Dev Biol; 1996 Sep; 178(2):375-92. PubMed ID: 8812136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radial glia produce and align the ligand fibronectin during neuronal migration in the developing chick brain.
    Stettler EM; Galileo DS
    J Comp Neurol; 2004 Jan; 468(3):441-51. PubMed ID: 14681936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Matrix Gla protein C-terminal region binds to vitronectin. Co-localization suggests binding occurs during tissue development.
    Nishimoto SK; Nishimoto M
    Matrix Biol; 2005 Aug; 24(5):353-61. PubMed ID: 15982861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vascular patterning of the quail coronary system during development.
    Tomanek RJ; Hansen HK; Dedkov EI
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Sep; 288(9):989-99. PubMed ID: 16892426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Platelet-derived growth factors in the developing avian heart and maturating coronary vasculature.
    Van Den Akker NM; Lie-Venema H; Maas S; Eralp I; DeRuiter MC; Poelmann RE; Gittenberger-De Groot AC
    Dev Dyn; 2005 Aug; 233(4):1579-88. PubMed ID: 15973731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of myocardial and vascular precursor cells in human and mouse epicardium.
    Limana F; Zacheo A; Mocini D; Mangoni A; Borsellino G; Diamantini A; De Mori R; Battistini L; Vigna E; Santini M; Loiaconi V; Pompilio G; Germani A; Capogrossi MC
    Circ Res; 2007 Dec; 101(12):1255-65. PubMed ID: 17947800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Signaling during epicardium and coronary vessel development.
    Pérez-Pomares JM; de la Pompa JL
    Circ Res; 2011 Dec; 109(12):1429-42. PubMed ID: 22158650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos.
    Lie-Venema H; Gittenberger-de Groot AC; van Empel LJ; Boot MJ; Kerkdijk H; de Kant E; DeRuiter MC
    Circ Res; 2003 Apr; 92(7):749-56. PubMed ID: 12637368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment.
    Sengbusch JK; He W; Pinco KA; Yang JT
    J Cell Biol; 2002 May; 157(5):873-82. PubMed ID: 12021259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epicardium is required for sarcomeric maturation and cardiomyocyte growth in the ventricular compact layer mediated by transforming growth factor β and fibroblast growth factor before the onset of coronary circulation.
    Takahashi M; Yamagishi T; Narematsu M; Kamimura T; Kai M; Nakajima Y
    Congenit Anom (Kyoto); 2014 Aug; 54(3):162-71. PubMed ID: 24666202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart.
    Wilting J; Buttler K; Schulte I; Papoutsi M; Schweigerer L; Männer J
    Dev Biol; 2007 May; 305(2):451-9. PubMed ID: 17383624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Age-dependent distribution of collagen and glycoproteins in the blood vessels of the human uterine tube].
    Göpel C; Schultka R; Schuppan D
    Ann Anat; 1997 Feb; 179(1):83-8. PubMed ID: 9092299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tbx5 is required for avian and Mammalian epicardial formation and coronary vasculogenesis.
    Diman NY; Brooks G; Kruithof BP; Elemento O; Seidman JG; Seidman CE; Basson CT; Hatcher CJ
    Circ Res; 2014 Oct; 115(10):834-44. PubMed ID: 25245104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localisation and cellular origin of hyaluronectin.
    Ponting JM; Kumar S
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):331-46. PubMed ID: 7591996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunofluorescence study of fibronectin distribution in the developing chick embryo striated muscles.
    Corvetti Arduini G; Di Renzo M; Tarone G; Sisto Daneo L
    Basic Appl Histochem; 1983; 27(1):23-33. PubMed ID: 6344857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tbx18 regulates development of the epicardium and coronary vessels.
    Wu SP; Dong XR; Regan JN; Su C; Majesky MW
    Dev Biol; 2013 Nov; 383(2):307-20. PubMed ID: 24016759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180.
    Huang X; Gao X; Diaz-Trelles R; Ruiz-Lozano P; Wang Z
    Dev Biol; 2008 Jul; 319(2):258-66. PubMed ID: 18508041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A co-culture assay of embryonic zebrafish hearts to assess migration of epicardial cells in vitro.
    Yue MS; Plavicki JS; Li XY; Peterson RE; Heideman W
    BMC Dev Biol; 2015 Dec; 15():50. PubMed ID: 26715205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epicardial formation in staged human embryos.
    Hirakow R
    Kaibogaku Zasshi; 1992 Oct; 67(5):616-22. PubMed ID: 1462754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.