These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 8681389)
1. Regulation of dynein-driven microtubule sliding by an axonemal kinase and phosphatase in Chlamydomonas flagella. Habermacher G; Sale WS Cell Motil Cytoskeleton; 1995; 32(2):106-9. PubMed ID: 8681389 [TBL] [Abstract][Full Text] [Related]
2. Regulation of flagellar dynein by the axonemal central apparatus. Smith EF Cell Motil Cytoskeleton; 2002 May; 52(1):33-42. PubMed ID: 11977081 [TBL] [Abstract][Full Text] [Related]
3. Regulation of ciliary beat frequency by a dynein light chain. Hamasaki T; Barkalow K; Satir P Cell Motil Cytoskeleton; 1995; 32(2):121-4. PubMed ID: 8681392 [No Abstract] [Full Text] [Related]
4. Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase. Howard DR; Habermacher G; Glass DB; Smith EF; Sale WS J Cell Biol; 1994 Dec; 127(6 Pt 1):1683-92. PubMed ID: 7798320 [TBL] [Abstract][Full Text] [Related]
5. Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method. Kurimoto E; Kamiya R Cell Motil Cytoskeleton; 1991; 19(4):275-81. PubMed ID: 1834352 [TBL] [Abstract][Full Text] [Related]
6. Regulation of flagellar dynein by an axonemal type-1 phosphatase in Chlamydomonas. Habermacher G; Sale WS J Cell Sci; 1996 Jul; 109 ( Pt 7)():1899-907. PubMed ID: 8832412 [TBL] [Abstract][Full Text] [Related]
7. Exploring the function of inner and outer dynein arms with Chlamydomonas mutants. Kamiya R Cell Motil Cytoskeleton; 1995; 32(2):98-102. PubMed ID: 8681402 [TBL] [Abstract][Full Text] [Related]
8. Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins. Kikushima K Cell Motil Cytoskeleton; 2009 May; 66(5):272-80. PubMed ID: 19347929 [TBL] [Abstract][Full Text] [Related]
9. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules. Wargo MJ; McPeek MA; Smith EF J Cell Sci; 2004 May; 117(Pt 12):2533-44. PubMed ID: 15128866 [TBL] [Abstract][Full Text] [Related]
10. Regulation of dynein activity within Chlamydomonas flagella. Piperno G Cell Motil Cytoskeleton; 1995; 32(2):103-5. PubMed ID: 8681388 [No Abstract] [Full Text] [Related]
11. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. Wirschell M; Hendrickson T; Sale WS Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744 [TBL] [Abstract][Full Text] [Related]
12. Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force. Hayashibe K; Shingyoji C; Kamiya R Cell Motil Cytoskeleton; 1997; 37(3):232-9. PubMed ID: 9227853 [TBL] [Abstract][Full Text] [Related]
13. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules. Takada S; Kamiya R Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378 [TBL] [Abstract][Full Text] [Related]
14. Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. Smith EF; Sale WS Science; 1992 Sep; 257(5076):1557-9. PubMed ID: 1387971 [TBL] [Abstract][Full Text] [Related]
15. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Sakakibara H; Kojima H; Sakai Y; Katayama E; Oiwa K Nature; 1999 Aug; 400(6744):586-90. PubMed ID: 10448863 [TBL] [Abstract][Full Text] [Related]
16. Novel mode of hyper-oscillation in the paralyzed axoneme of a Chlamydomonas mutant lacking the central-pair microtubules. Yagi T; Kamiya R Cell Motil Cytoskeleton; 1995; 31(3):207-14. PubMed ID: 7585990 [TBL] [Abstract][Full Text] [Related]
17. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. Habermacher G; Sale WS J Cell Biol; 1997 Jan; 136(1):167-76. PubMed ID: 9008711 [TBL] [Abstract][Full Text] [Related]
18. Slow ADP-dependent acceleration of microtubule translocation produced by an axonemal dynein. Kikushima K; Yagi T; Kamiya R FEBS Lett; 2004 Apr; 563(1-3):119-22. PubMed ID: 15063734 [TBL] [Abstract][Full Text] [Related]
19. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. Baron DM; Kabututu ZP; Hill KL J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810 [TBL] [Abstract][Full Text] [Related]
20. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. Gokhale A; Wirschell M; Sale WS J Cell Biol; 2009 Sep; 186(6):817-24. PubMed ID: 19752022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]