These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8681782)

  • 41. A chromaffin cell-derived protein induces the NADPH-diaphorase phenotype in cultured rat spinal cord neurons.
    Huber KA; Krieglstein K; Unsicker K
    Neuroscience; 1996 Apr; 71(4):1145-52. PubMed ID: 8684618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons.
    Behar TN; Schaffner AE; Colton CA; Somogyi R; Olah Z; Lehel C; Barker JL
    J Neurosci; 1994 Jan; 14(1):29-38. PubMed ID: 8283236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and migration of avian sympathetic preganglionic neurons.
    Prasad A; Hollyday M
    J Comp Neurol; 1991 May; 307(2):237-58. PubMed ID: 1713232
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spinal cord neuroepithelial progenitor cells display developmental plasticity when co-cultured with embryonic spinal cord slices at different stages of development.
    O' Leary CJ; McDermott KW
    Dev Dyn; 2011 Apr; 240(4):785-95. PubMed ID: 21400633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.
    Vizzard MA; Erdman SL; Erickson VL; Stewart RJ; Roppolo JR; De Groat WC
    J Comp Neurol; 1994 Jan; 339(1):62-75. PubMed ID: 8106662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spinal circuits formation: a study of developmentally regulated markers in organotypic cultures of embryonic mouse spinal cord.
    Avossa D; Rosato-Siri MD; Mazzarol F; Ballerini L
    Neuroscience; 2003; 122(2):391-405. PubMed ID: 14614905
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensory axons are guided by local cues in the developing dorsal spinal cord.
    Sharma K; Frank E
    Development; 1998 Feb; 125(4):635-43. PubMed ID: 9435284
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transient and continuous expression of NADPH diaphorase in different neuronal populations of developing rat spinal cord.
    Wetts R; Phelps PE; Vaughn JE
    Dev Dyn; 1995 Mar; 202(3):215-28. PubMed ID: 7780172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord.
    Furlan F; Taccola G; Grandolfo M; Guasti L; Arcangeli A; Nistri A; Ballerini L
    J Neurosci; 2007 Jan; 27(4):919-28. PubMed ID: 17251434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New organotypic model to culture the entire fetal rat spinal cord.
    Mariotti C; Askanas V; Engel WK
    J Neurosci Methods; 1993 Jun; 48(1-2):157-67. PubMed ID: 8377519
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organization and neurochemical properties of intersegmental interneurons in the lumbar enlargement of the adult rat.
    Liu TT; Bannatyne BA; Maxwell DJ
    Neuroscience; 2010 Dec; 171(2):461-84. PubMed ID: 20849930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effects of glutamate transport inhibitor on organotypic cultured spinal cord slices].
    Xiao XJ; Wang XJ; Wang LQ; Song XQ; Liu WG; Zheng MA; Li CY
    Shi Yan Sheng Wu Xue Bao; 2005 Apr; 38(2):171-6. PubMed ID: 16011251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preferential cholinergic projections by embryonic spinal cord neurons within cocultured mouse superior cervical ganglia.
    Chalazonitis A; Crain SM; Kessler JA
    Brain Res; 1988 Aug; 458(2):231-48. PubMed ID: 3208105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical mapping of neural network activity in chick spinal cord at an intermediate stage of embryonic development.
    Arai Y; Momose-Sato Y; Sato K; Kamino K
    J Neurophysiol; 1999 Apr; 81(4):1889-902. PubMed ID: 10200224
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transient expression of Bis protein in midline radial glia in developing rat brainstem and spinal cord.
    Choi JS; Lee JH; Shin YJ; Lee JY; Yun H; Chun MH; Lee MY
    Cell Tissue Res; 2009 Jul; 337(1):27-36. PubMed ID: 19415333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Birinyi A; Viszokay K; Wéber I; Kiehn O; Antal M
    J Comp Neurol; 2003 Jul; 461(4):429-40. PubMed ID: 12746860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Short-term lineage analysis of dorsally derived Olig3 cells in the developing spinal cord.
    Ding L; Takebayashi H; Watanabe K; Ohtsuki T; Tanaka KF; Nabeshima Y; Chisaka O; Ikenaka K; Ono K
    Dev Dyn; 2005 Nov; 234(3):622-32. PubMed ID: 16145668
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Wéber I; Veress G; Szucs P; Antal M; Birinyi A
    Brain Res; 2007 Oct; 1178():65-72. PubMed ID: 17920568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.