These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 8681944)
1. Nuclear-magnetic-resonance determination of the electron self-exchange rate constant of Clostridium pasteurianum rubredoxin. Gaillard J; Zhuang-Jackson H; Moulis JM Eur J Biochem; 1996 Jun; 238(2):346-9. PubMed ID: 8681944 [TBL] [Abstract][Full Text] [Related]
2. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer. Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525 [TBL] [Abstract][Full Text] [Related]
3. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties. Kümmerle R; Zhuang-Jackson H; Gaillard J; Moulis JM Biochemistry; 1997 Dec; 36(50):15983-91. PubMed ID: 9398333 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Yelle RB; Park NS; Ichiye T Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963 [TBL] [Abstract][Full Text] [Related]
5. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113 [TBL] [Abstract][Full Text] [Related]
6. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation. Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500 [TBL] [Abstract][Full Text] [Related]
7. Superoxide reductase: different interaction modes with its two redox partners. Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730 [TBL] [Abstract][Full Text] [Related]
8. Correlation between hydrogen bond lengths and reduction potentials in Clostridium pasteurianum rubredoxin. Lin IJ; Gebel EB; Machonkin TE; Westler WM; Markley JL J Am Chem Soc; 2003 Feb; 125(6):1464-5. PubMed ID: 12568591 [TBL] [Abstract][Full Text] [Related]
10. Assignment of 1H, 13C, and 15N signals of reduced Clostridium pasteurianum rubredoxin: oxidation state-dependent changes in chemical shifts and relaxation rates. Prantner AM; Volkman BF; Wilkens SJ; Xia B; Markley JL J Biomol NMR; 1997 Dec; 10(4):411-2. PubMed ID: 9460246 [No Abstract] [Full Text] [Related]
11. Protein control of electron transfer rates via polarization: molecular dynamics studies of rubredoxin. Dolan EA; Yelle RB; Beck BW; Fischer JT; Ichiye T Biophys J; 2004 Apr; 86(4):2030-6. PubMed ID: 15041645 [TBL] [Abstract][Full Text] [Related]
12. Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein. Bonomi F; Fessas D; Iametti S; Kurtz DM; Mazzini S Protein Sci; 2000 Dec; 9(12):2413-26. PubMed ID: 11206063 [TBL] [Abstract][Full Text] [Related]
13. Mössbauer, EPR, and MCD studies of the C9S and C42S variants of Clostridium pasteurianum rubredoxin and MDC studies of the wild-type protein. Yoo SJ; Meyer J; Achim C; Peterson J; Hendrich MP; Münck E J Biol Inorg Chem; 2000 Aug; 5(4):475-87. PubMed ID: 10968619 [TBL] [Abstract][Full Text] [Related]
14. Redox properties of mesophilic and hyperthermophilic rubredoxins as a function of pressure and temperature. Gillès de Pélichy LD; Smith ET Biochemistry; 1999 Jun; 38(24):7874-80. PubMed ID: 10387028 [TBL] [Abstract][Full Text] [Related]
15. Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum. Maher M; Cross M; Wilce MC; Guss JM; Wedd AG Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):298-303. PubMed ID: 14747706 [TBL] [Abstract][Full Text] [Related]
16. Changes in hydrogen-bond strengths explain reduction potentials in 10 rubredoxin variants. Lin IJ; Gebel EB; Machonkin TE; Westler WM; Markley JL Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14581-6. PubMed ID: 16199518 [TBL] [Abstract][Full Text] [Related]
17. Electron transport to clostridial rubredoxin: kinetics of the reduction by hexaammineruthenium(II), vanadous and chromous ions. Jacks CA; Bennett LE; Raymond WN; Lovenberg W Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1118-22. PubMed ID: 4524621 [TBL] [Abstract][Full Text] [Related]
18. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Blake PR; Park JB; Bryant FO; Aono S; Magnuson JK; Eccleston E; Howard JB; Summers MF; Adams MW Biochemistry; 1991 Nov; 30(45):10885-95. PubMed ID: 1932012 [TBL] [Abstract][Full Text] [Related]
19. Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus. Rodrigues JV; Abreu IA; Saraiva LM; Teixeira M Biochem Biophys Res Commun; 2005 Apr; 329(4):1300-5. PubMed ID: 15766568 [TBL] [Abstract][Full Text] [Related]
20. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation. LeMaster DM; Tang J; Hernández G Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]