These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 8681944)
21. Influence of protein flexibility on the redox potential of rubredoxin: energy minimization studies. Shenoy VS; Ichiye T Proteins; 1993 Oct; 17(2):152-60. PubMed ID: 8265563 [TBL] [Abstract][Full Text] [Related]
22. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin. Hernández G; LeMaster DM Biochemistry; 2001 Dec; 40(48):14384-91. PubMed ID: 11724550 [TBL] [Abstract][Full Text] [Related]
23. Hyperfine-shifted (13)C and (15)N NMR signals from Clostridium pasteurianum rubredoxin: extensive assignments and quantum chemical verification. Lin IJ; Xia B; King DS; Machonkin TE; Westler WM; Markley JL J Am Chem Soc; 2009 Oct; 131(42):15555-63. PubMed ID: 19799419 [TBL] [Abstract][Full Text] [Related]
24. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Lee HJ; Basran J; Scrutton NS Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514 [TBL] [Abstract][Full Text] [Related]
25. Kinetic studies of reduction of a 1:1 cytochrome c-flavodoxin complex by free flavin semiquinones and rubredoxin. Hazzard JT; Cusanovich MA; Tainer JA; Getzoff ED; Tollin G Biochemistry; 1986 Jun; 25(11):3318-28. PubMed ID: 3015203 [TBL] [Abstract][Full Text] [Related]
26. Crystallographic studies of V44 mutants of Clostridium pasteurianum rubredoxin: effects of side-chain size on reduction potential. Park IY; Eidsness MK; Lin IJ; Gebel EB; Youn B; Harley JL; Machonkin TE; Frederick RO; Markley JL; Smith ET; Ichiye T; Kang C Proteins; 2004 Nov; 57(3):618-25. PubMed ID: 15382226 [TBL] [Abstract][Full Text] [Related]
27. Redox thermodynamics of mutant forms of the rubredoxin from Clostridiumpasteurianum: identification of a stable Fe(III)(S-Cys)3(OH) centre in the C6S mutant. Xiao Z; Gardner AR; Cross M; Maes EM; Czernuszewicz RS; Sola M; Wedd AG J Biol Inorg Chem; 2001 Jun; 6(5-6):638-49. PubMed ID: 11472027 [TBL] [Abstract][Full Text] [Related]
28. Application of NMRD to hydration of rubredoxin and a variant containing a (Cys-S)3FeIII(OH) site. Bertini I; Luchinat C; Nerinovski K; Parigi G; Cross M; Xiao Z; Wedd AG Biophys J; 2003 Jan; 84(1):545-51. PubMed ID: 12524306 [TBL] [Abstract][Full Text] [Related]
29. Assembly of a [2Fe-2S]2+ cluster in a molecular variant of Clostridium pasteurianum rubredoxin. Meyer J; Gagnon J; Gaillard J; Lutz M; Achim C; Münck E; Pétillot Y; Colangelo CM; Scott RA Biochemistry; 1997 Oct; 36(43):13374-80. PubMed ID: 9341230 [TBL] [Abstract][Full Text] [Related]
31. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Coulter ED; Kurtz DM Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030 [TBL] [Abstract][Full Text] [Related]
32. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin. LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245 [TBL] [Abstract][Full Text] [Related]
33. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase. Perry A; Tambyrajah W; Grossmann JG; Lian LY; Scrutton NS Biochemistry; 2004 Mar; 43(11):3167-82. PubMed ID: 15023067 [TBL] [Abstract][Full Text] [Related]
34. Analysis, by electrospray ionization mass spectrometry, of several forms of Clostridium pasteurianum rubredoxin. Petillot Y; Forest E; Mathieu I; Meyer J; Moulis JM Biochem J; 1993 Dec; 296 ( Pt 3)(Pt 3):657-61. PubMed ID: 8280064 [TBL] [Abstract][Full Text] [Related]
35. New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway. Folgosa F; Cordas CM; Santos JA; Pereira AS; Moura JJ; Tavares P; Moura I Biochem J; 2011 Sep; 438(3):485-94. PubMed ID: 21682694 [TBL] [Abstract][Full Text] [Related]
36. Mössbauer study of reduced rubredoxin as purified and in whole cells. Structural correlation analysis of spin Hamiltonian parameters. Vrajmasu VV; Bominaar EL; Meyer J; Münck E Inorg Chem; 2002 Dec; 41(24):6358-71. PubMed ID: 12444779 [TBL] [Abstract][Full Text] [Related]
37. A cyclic peptide-based redox-active model of rubredoxin. Jacques A; Clémancey M; Blondin G; Fourmond V; Latour JM; Sénèque O Chem Commun (Camb); 2013 Apr; 49(28):2915-7. PubMed ID: 23459993 [TBL] [Abstract][Full Text] [Related]
39. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. Perry A; Lian LY; Scrutton NS Biochem J; 2001 Feb; 354(Pt 1):89-98. PubMed ID: 11171083 [TBL] [Abstract][Full Text] [Related]
40. Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin. Min T; Ergenekan CE; Eidsness MK; Ichiye T; Kang C Protein Sci; 2001 Mar; 10(3):613-21. PubMed ID: 11344329 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]