These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8682537)

  • 1. Ultrasonic assessment of human and bovine trabecular bone: a comparison study.
    Alves JM; Xu W; Lin D; Siffert RS; Ryaby JT; Kaufman JJ
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):249-58. PubMed ID: 8682537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of marrow on ultrasonic velocity and attenuation in bovine trabecular bone.
    Alves JM; Ryaby JT; Kaufman JJ; Magee FP; Siffert RS
    Calcif Tissue Int; 1996 May; 58(5):362-7. PubMed ID: 8661972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships of Ultrasonic Backscatter With Bone Densities and Microstructure in Bovine Cancellous Bone.
    Liu C; Li B; Diwu Q; Li Y; Zhang R; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2311-2321. PubMed ID: 30575524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of three ultrasonic axial transmission methods for bone assessment.
    Muller M; Moilanen P; Bossy E; Nicholson P; Kilappa V; Timonen J; Talmant M; Cheng S; Laugier P
    Ultrasound Med Biol; 2005 May; 31(5):633-42. PubMed ID: 15866413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound velocity and attenuation in cancellous bone samples from lumbar vertebra and calcaneus.
    Trebacz H; Natali A
    Osteoporos Int; 1999; 9(2):99-105. PubMed ID: 10367035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative ultrasound predicts bone mineral density and failure load in human lumbar vertebrae.
    Nicholson PH; Alkalay R
    Clin Biomech (Bristol); 2007 Jul; 22(6):623-9. PubMed ID: 17499408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound velocity and broadband attenuation over a wide range of bone mineral density.
    Han S; Rho J; Medige J; Ziv I
    Osteoporos Int; 1996; 6(4):291-6. PubMed ID: 8883117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The in vitro measurement of ultrasound in cancellous bone.
    Langton CM; Hodgskinson R
    Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of the velocity and attenuation of ultrasound in bone on the mineral content.
    Tavakoli MB; Evans JA
    Phys Med Biol; 1991 Nov; 36(11):1529-37. PubMed ID: 1754623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic characterization of cancellous bone using apparent integrated backscatter.
    Hoffmeister BK; Jones CI; Caldwell GJ; Kaste SC
    Phys Med Biol; 2006 Jun; 51(11):2715-27. PubMed ID: 16723761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2-6.7 MHz frequency range.
    Hakulinen MA; Day JS; Töyräs J; Timonen M; Kröger H; Weinans H; Kiviranta I; Jurvelin JS
    Phys Med Biol; 2005 Apr; 50(8):1629-42. PubMed ID: 15815086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic characterization of human cancellous bone in vitro using three different apparent backscatter parameters in the frequency range 0.6-15.0 mhz.
    Hoffmeister BK; Johnson DP; Janeski JA; Keedy DA; Steinert BW; Viano AM; Kaste SC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1442-52. PubMed ID: 18986933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations of linear and nonlinear ultrasound parameters with density and microarchitectural parameters in trabecular bone.
    Lee KI
    J Acoust Soc Am; 2013 Nov; 134(5):EL381-6. PubMed ID: 24181979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone.
    Han SM; Rho JY
    Proc Inst Mech Eng H; 1998; 212(3):223-7. PubMed ID: 9695641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic attenuation and velocity in bone.
    Evans JA; Tavakoli MB
    Phys Med Biol; 1990 Oct; 35(10):1387-96. PubMed ID: 2243843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between the combination of apparent integrated backscatter-spectral centroid shift and bone mineral density.
    Tang T; Liu C; Xu F; Ta D
    J Med Ultrason (2001); 2016 Apr; 43(2):167-73. PubMed ID: 26753614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic velocity dispersion in bovine cortical bone: an experimental study.
    Haïat G; Sasso M; Naili S; Matsukawa M
    J Acoust Soc Am; 2008 Sep; 124(3):1811-21. PubMed ID: 19045671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound velocity and attenuation at different skeletal sites compared with bone mineral density measured using dual energy X-ray absorptiometry.
    Cunningham JL; Fordham JN; Hewitt TA; Speed CA
    Br J Radiol; 1996 Jan; 69(817):25-32. PubMed ID: 8785618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backscatter measurement of cancellous bone using the ultrasound transit time spectroscopy.
    Jia Y; Han S; Li B; Liu C; Ta D
    J Acoust Soc Am; 2024 Apr; 155(4):2670-2686. PubMed ID: 38639562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone.
    Hakulinen MA; Töyräs J; Saarakkala S; Hirvonen J; Kröger H; Jurvelin JS
    Ultrasound Med Biol; 2004 Jul; 30(7):919-27. PubMed ID: 15313324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.