These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 8682773)
21. Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth. Gallegos MT; Marqués S; Ramos JL J Bacteriol; 1996 Apr; 178(8):2356-61. PubMed ID: 8636038 [TBL] [Abstract][Full Text] [Related]
22. Transcriptional induction kinetics from the promoters of the catabolic pathways of TOL plasmid pWW0 of Pseudomonas putida for metabolism of aromatics. Marqués S; Holtel A; Timmis KN; Ramos JL J Bacteriol; 1994 May; 176(9):2517-24. PubMed ID: 8169200 [TBL] [Abstract][Full Text] [Related]
23. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Sarand I; Skärfstad E; Forsman M; Romantschuk M; Shingler V Appl Environ Microbiol; 2001 Jan; 67(1):162-71. PubMed ID: 11133441 [TBL] [Abstract][Full Text] [Related]
24. Evidence for involvement of proteins HU and RpoS in transcription of the osmoresponsive proU operon in Escherichia coli. Manna D; Gowrishankar J J Bacteriol; 1994 Sep; 176(17):5378-84. PubMed ID: 8071215 [TBL] [Abstract][Full Text] [Related]
25. prpR, ntrA, and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar typhimurium LT2. Palacios S; Escalante-Semerena JC J Bacteriol; 2000 Feb; 182(4):905-10. PubMed ID: 10648513 [TBL] [Abstract][Full Text] [Related]
26. Deciphering environmental signal integration in sigma54-dependent promoters with a simple mathematical model. Van Dien SJ; de Lorenzo V J Theor Biol; 2003 Oct; 224(4):437-49. PubMed ID: 12957116 [TBL] [Abstract][Full Text] [Related]
27. Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. Skibinski DA; Golby P; Chang YS; Sargent F; Hoffman R; Harper R; Guest JR; Attwood MM; Berks BC; Andrews SC J Bacteriol; 2002 Dec; 184(23):6642-53. PubMed ID: 12426353 [TBL] [Abstract][Full Text] [Related]
28. Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. Jovanovic G; Weiner L; Model P J Bacteriol; 1996 Apr; 178(7):1936-45. PubMed ID: 8606168 [TBL] [Abstract][Full Text] [Related]
29. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. Schulz A; Langowski J; Rippe K J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265 [TBL] [Abstract][Full Text] [Related]
30. Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida: A bio-molecular modeling and docking analysis. Ray S; Banerjee A J Environ Sci (China); 2015 Oct; 36():144-51. PubMed ID: 26456616 [TBL] [Abstract][Full Text] [Related]
31. The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma 32 or sigma 38 depending on the growth phase. Marqués S; Manzanera M; González-Pérez MM; Gallegos MT; Ramos JL Mol Microbiol; 1999 Feb; 31(4):1105-13. PubMed ID: 10096078 [TBL] [Abstract][Full Text] [Related]
32. Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. Canosa I; Yuste L; Rojo F J Bacteriol; 1999 Mar; 181(6):1748-54. PubMed ID: 10074066 [TBL] [Abstract][Full Text] [Related]
33. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related]
34. Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Shingler V; Pavel H Mol Microbiol; 1995 Aug; 17(3):505-13. PubMed ID: 8559069 [TBL] [Abstract][Full Text] [Related]
35. In vivo and in vitro activities of the Escherichia coli sigma54 transcription activator, PspF, and its DNA-binding mutant, PspFDeltaHTH. Jovanovic G; Rakonjac J; Model P J Mol Biol; 1999 Jan; 285(2):469-83. PubMed ID: 9878422 [TBL] [Abstract][Full Text] [Related]
36. Role of upstream activation sequences and integration host factor in transcriptional activation by the constitutively active prokaryotic enhancer-binding protein PspF. Dworkin J; Jovanovic G; Model P J Mol Biol; 1997 Oct; 273(2):377-88. PubMed ID: 9344746 [TBL] [Abstract][Full Text] [Related]
37. The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. Fyfe JA; Carrick CS; Davies JK J Bacteriol; 1995 Jul; 177(13):3781-7. PubMed ID: 7601844 [TBL] [Abstract][Full Text] [Related]
38. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707 [TBL] [Abstract][Full Text] [Related]
39. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator. Kojic M; Venturi V J Bacteriol; 2001 Jun; 183(12):3712-20. PubMed ID: 11371535 [TBL] [Abstract][Full Text] [Related]
40. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. Schröder O; Wagner R J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]