These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 8682780)
1. Role of CodY in regulation of the Bacillus subtilis hut operon. Fisher SH; Rohrer K; Ferson AE J Bacteriol; 1996 Jul; 178(13):3779-84. PubMed ID: 8682780 [TBL] [Abstract][Full Text] [Related]
2. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Slack FJ; Serror P; Joyce E; Sonenshein AL Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641 [TBL] [Abstract][Full Text] [Related]
3. Role of the DNA sequence downstream of the Bacillus subtilis hut promoter in regulation of the hut operon. Eda S; Hoshino T; Oda M Biosci Biotechnol Biochem; 2000 Mar; 64(3):484-91. PubMed ID: 10803944 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. Wray LV; Fisher SH J Bacteriol; 1994 Sep; 176(17):5466-73. PubMed ID: 8071225 [TBL] [Abstract][Full Text] [Related]
5. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247 [TBL] [Abstract][Full Text] [Related]
6. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. Wray LV; Pettengill FK; Fisher SH J Bacteriol; 1994 Apr; 176(7):1894-902. PubMed ID: 8144455 [TBL] [Abstract][Full Text] [Related]
7. Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon. Belitsky BR J Mol Biol; 2011 Oct; 413(2):321-36. PubMed ID: 21840319 [TBL] [Abstract][Full Text] [Related]
8. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. Zalieckas JM; Wray LV; Fisher SH J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782 [TBL] [Abstract][Full Text] [Related]
9. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500 [TBL] [Abstract][Full Text] [Related]
10. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. Wray LV; Ferson AE; Fisher SH J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005 [TBL] [Abstract][Full Text] [Related]
11. Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Serror P; Sonenshein AL Mol Microbiol; 1996 May; 20(4):843-52. PubMed ID: 8793880 [TBL] [Abstract][Full Text] [Related]
12. Role of branched-chain amino acid transport in Bacillus subtilis CodY activity. Belitsky BR J Bacteriol; 2015 Apr; 197(8):1330-8. PubMed ID: 25645558 [TBL] [Abstract][Full Text] [Related]
13. CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. Bergara F; Ibarra C; Iwamasa J; Patarroyo JC; Aguilera R; Márquez-Magaña LM J Bacteriol; 2003 May; 185(10):3118-26. PubMed ID: 12730172 [TBL] [Abstract][Full Text] [Related]
14. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Guédon E; Serror P; Ehrlich SD; Renault P; Delorme C Mol Microbiol; 2001 Jun; 40(5):1227-39. PubMed ID: 11401725 [TBL] [Abstract][Full Text] [Related]
15. PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis. Huang SC; Lin TH; Shaw GC Microbiology (Reading); 2011 Dec; 157(Pt 12):3370-3377. PubMed ID: 21964733 [TBL] [Abstract][Full Text] [Related]
16. Interactive regulation by the Bacillus subtilis global regulators CodY and ScoC. Belitsky BR; Barbieri G; Albertini AM; Ferrari E; Strauch MA; Sonenshein AL Mol Microbiol; 2015 Aug; 97(4):698-716. PubMed ID: 25966844 [TBL] [Abstract][Full Text] [Related]
17. Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Zalieckas JM; Wray LV; Ferson AE; Fisher SH Mol Microbiol; 1998 Mar; 27(5):1031-8. PubMed ID: 9535092 [TBL] [Abstract][Full Text] [Related]
18. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon. Oda M; Sugishita A; Furukawa K J Bacteriol; 1988 Jul; 170(7):3199-205. PubMed ID: 2454913 [TBL] [Abstract][Full Text] [Related]
19. A novel mutation, of the Bacillus subtilis hut operon that relieves both catabolite repression and amino acid repression. Eda S; Hoshino T; Oda M Appl Microbiol Biotechnol; 1999 Jan; 51(1):85-90. PubMed ID: 10077824 [TBL] [Abstract][Full Text] [Related]
20. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB. Fisher SH; Strauch MA; Atkinson MR; Wray LV J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]