These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 8683118)
1. Selection and binding of peptides to human transporters associated with antigen processing and rat cim-a and -b. Wang P; Gyllner G; Kvist S J Immunol; 1996 Jul; 157(1):213-20. PubMed ID: 8683118 [TBL] [Abstract][Full Text] [Related]
2. Peptide translocation by variants of the transporter associated with antigen processing. Heemels MT; Schumacher TN; Wonigeit K; Ploegh HL Science; 1993 Dec; 262(5142):2059-63. PubMed ID: 8266106 [TBL] [Abstract][Full Text] [Related]
3. Translocation of long peptides by transporters associated with antigen processing (TAP). Koopmann JO; Post M; Neefjes JJ; Hämmerling GJ; Momburg F Eur J Immunol; 1996 Aug; 26(8):1720-8. PubMed ID: 8765012 [TBL] [Abstract][Full Text] [Related]
4. Identification of a contact region for peptide on the TAP1 chain of the transporter associated with antigen processing. Nijenhuis M; Schmitt S; Armandola EA; Obst R; Brunner J; Hämmerling GJ J Immunol; 1996 Mar; 156(6):2186-95. PubMed ID: 8690908 [TBL] [Abstract][Full Text] [Related]
5. The rational design of TAP inhibitors using peptide substrate modifications and peptidomimetics. Grommé M; van der Valk R; Sliedregt K; Vernie L; Liskamp R; Hämmerling G; Koopmann JO; Momburg F; Neefjes J Eur J Immunol; 1997 Apr; 27(4):898-904. PubMed ID: 9130642 [TBL] [Abstract][Full Text] [Related]
6. MHC class I molecules compete in the endoplasmic reticulum for access to transporter associated with antigen processing. Knittler MR; Gülow K; Seelig A; Howard JC J Immunol; 1998 Dec; 161(11):5967-77. PubMed ID: 9834078 [TBL] [Abstract][Full Text] [Related]
7. Kinetic analysis of peptide binding to the TAP transport complex: evidence for structural rearrangements induced by substrate binding. Neumann L; Tampé R J Mol Biol; 1999 Dec; 294(5):1203-13. PubMed ID: 10600378 [TBL] [Abstract][Full Text] [Related]
8. Novel peptide-binding proteins and peptide transport in normal and TAP-deficient microsomes. Marusina K; Reid G; Gabathuler R; Jefferies W; Monaco JJ Biochemistry; 1997 Jan; 36(4):856-63. PubMed ID: 9020784 [TBL] [Abstract][Full Text] [Related]
9. Peptide transport in human lymphoblastoid and tumor cells: effect of transporter associated with antigen presentation (TAP) polymorphism. Quadri SA; Singal DP Immunol Lett; 1998 Mar; 61(1):25-31. PubMed ID: 9562372 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of two rat MHC class Ia (RT1-A) molecules that are associated differentially with peptide transporter alleles TAP-A and TAP-B. Rudolph MG; Stevens J; Speir JA; Trowsdale J; Butcher GW; Joly E; Wilson IA J Mol Biol; 2002 Dec; 324(5):975-90. PubMed ID: 12470953 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the fine specificity of rat, mouse and human TAP peptide transporters. Neefjes J; Gottfried E; Roelse J; Grommé M; Obst R; Hämmerling GJ; Momburg F Eur J Immunol; 1995 Apr; 25(4):1133-6. PubMed ID: 7737286 [TBL] [Abstract][Full Text] [Related]
12. Disruption of the association of 73 kDa heat shock cognate protein with transporters associated with antigen processing (TAP) decreases TAP-dependent translocation of antigenic peptides into the endoplasmic reticulum. Kamiguchi K; Torigoe T; Fujiwara O; Ohshima S; Hirohashi Y; Sahara H; Hirai I; Kohgo Y; Sato N Microbiol Immunol; 2008 Feb; 52(2):94-106. PubMed ID: 18380807 [TBL] [Abstract][Full Text] [Related]
13. TAP polymorphism does not influence transport of peptide variants in mice and humans. Obst R; Armandola EA; Nijenhuis M; Momburg F; Hämmerling GJ Eur J Immunol; 1995 Aug; 25(8):2170-6. PubMed ID: 7664780 [TBL] [Abstract][Full Text] [Related]
14. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Momburg F; Roelse J; Howard JC; Butcher GW; Hämmerling GJ; Neefjes JJ Nature; 1994 Feb; 367(6464):648-51. PubMed ID: 8107849 [TBL] [Abstract][Full Text] [Related]
15. Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. Daniel S; Brusic V; Caillat-Zucman S; Petrovsky N; Harrison L; Riganelli D; Sinigaglia F; Gallazzi F; Hammer J; van Endert PM J Immunol; 1998 Jul; 161(2):617-24. PubMed ID: 9670935 [TBL] [Abstract][Full Text] [Related]
16. Substrate selection by transporters associated with antigen processing occurs during peptide binding to TAP. Gubler B; Daniel S; Armandola EA; Hammer J; Caillat-Zucman S; van Endert PM Mol Immunol; 1998 Jun; 35(8):427-33. PubMed ID: 9798647 [TBL] [Abstract][Full Text] [Related]
17. A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. Armandola EA; Momburg F; Nijenhuis M; Bulbuc N; Früh K; Hämmerling GJ Eur J Immunol; 1996 Aug; 26(8):1748-55. PubMed ID: 8765016 [TBL] [Abstract][Full Text] [Related]
18. Human transporters associated with antigen processing possess a promiscuous peptide-binding site. Androlewicz MJ; Cresswell P Immunity; 1994 Apr; 1(1):7-14. PubMed ID: 7889401 [TBL] [Abstract][Full Text] [Related]
19. Function of the transport complex TAP in cellular immune recognition. Abele R; Tampé R Biochim Biophys Acta; 1999 Dec; 1461(2):405-19. PubMed ID: 10581370 [TBL] [Abstract][Full Text] [Related]
20. Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Uebel S; Kraas W; Kienle S; Wiesmüller KH; Jung G; Tampé R Proc Natl Acad Sci U S A; 1997 Aug; 94(17):8976-81. PubMed ID: 9256420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]