BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8683463)

  • 21. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
    Gregerson KA; Flagg TP; O'Neill TJ; Anderson M; Lauring O; Horel JS; Welling PA
    Endocrinology; 2001 Jul; 142(7):2820-32. PubMed ID: 11416001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain.
    Lesage F; Duprat F; Fink M; Guillemare E; Coppola T; Lazdunski M; Hugnot JP
    FEBS Lett; 1994 Oct; 353(1):37-42. PubMed ID: 7926018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine.
    Fakler B; Brändle U; Glowatzki E; Weidemann S; Zenner HP; Ruppersberg JP
    Cell; 1995 Jan; 80(1):149-54. PubMed ID: 7813010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel high-affinity inhibitor for inward-rectifier K+ channels.
    Jin W; Lu Z
    Biochemistry; 1998 Sep; 37(38):13291-9. PubMed ID: 9748337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K(+)-selective permeation.
    Reuveny E; Jan YN; Jan LY
    Biophys J; 1996 Feb; 70(2):754-61. PubMed ID: 8789092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A region of the muscarinic-gated atrial K+ channel critical for activation by G protein beta gamma subunits.
    Takao K; Yoshii M; Kanda A; Kokubun S; Nukada T
    Neuron; 1994 Sep; 13(3):747-55. PubMed ID: 7917304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of domains of the cardiac inward rectifying K+ channel, CIR, involved in the heteromultimer formation and in the G-protein gating.
    Kubo Y; Iizuka M
    Biochem Biophys Res Commun; 1996 Oct; 227(1):240-7. PubMed ID: 8858132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gating mechanism of the cloned inward rectifier potassium channel from mouse heart.
    Ishihara K; Hiraoka M
    J Membr Biol; 1994 Oct; 142(1):55-64. PubMed ID: 7707353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carboxy-terminal determinants of conductance in inward-rectifier K channels.
    Zhang YY; Robertson JL; Gray DA; Palmer LG
    J Gen Physiol; 2004 Dec; 124(6):729-39. PubMed ID: 15572348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of the C-terminal domain to gating properties of inward rectifier potassium channels.
    Pessia M; Bond CT; Kavanaugh MP; Adelman JP
    Neuron; 1995 May; 14(5):1039-45. PubMed ID: 7748551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inward rectification of the IRK1 channel expressed in Xenopus oocytes: effects of intracellular pH reveal an intrinsic gating mechanism.
    Shieh RC; John SA; Lee JK; Weiss JN
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):363-76. PubMed ID: 8841997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inward rectifier potassium channels. Cloning, expression and structure-function studies.
    Lagrutta AA; Bond CT; Xia XM; Pessia M; Tucker S; Adelman JP
    Jpn Heart J; 1996 Sep; 37(5):651-60. PubMed ID: 8973378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutation of critical GIRK subunit residues disrupts N- and C-termini association and channel function.
    Sarac R; Hou P; Hurley KM; Hriciste D; Cohen NA; Nelson DJ
    J Neurosci; 2005 Feb; 25(7):1836-46. PubMed ID: 15716420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of inwardly rectifying potassium channels (GIRK1) by co-expressed rat brain cannabinoid receptors in Xenopus oocytes.
    Henry DJ; Chavkin C
    Neurosci Lett; 1995 Feb; 186(2-3):91-4. PubMed ID: 7777206
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression cloning of KCRF, a potassium channel regulatory factor.
    Keren-Raifman T; Ivanina T; Bismuth Y; Dascal N
    Biochem Biophys Res Commun; 2000 Aug; 274(3):852-8. PubMed ID: 10924366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.